氮化鋁陶瓷是以氮化鋁(AIN)為主晶相的陶瓷。AIN晶體以〔AIN4〕四面體為結構單元共價鍵化合物,具有纖鋅礦型結構,屬六方晶系。化學組成 AI 65.81%,N 34.19%,比重3.261g/cm3,白色或灰白色,單晶無色透明,常壓下的升華分解溫度為2450℃。為一種高溫耐熱材料。熱膨脹系數(4.0-6.0)X10-6/℃。多晶AIN熱導率達260W/(m.k),比氧化鋁高5-8倍,所以耐熱沖擊好,能耐2200℃的極熱。此外,氮化鋁具有不受鋁液和其它熔融金屬及砷化鎵侵蝕的特性,特別是對熔融鋁液具有極好的耐侵蝕性。性能指標:各種電性能(介電常數、介質損耗、體電阻率、介電強度)優良;機械性能好,抗折強度高于Al2O3和BeO陶瓷,可以常壓燒結;光傳輸特性好;無毒。氮化鋁具有高絕緣耐壓、熱膨脹系數、與硅匹配好等特性,不但用作結構陶瓷的燒結助劑或增強相。高導熱氮化鋁多少錢
氮化鋁粉體的制備工藝主要有直接氮化法和碳熱還原法,此外還有自蔓延合成法、高能球磨法、原位自反應合成法、等離子化學合成法及化學氣相沉淀法等。直接氮化法:直接氮化法就是在高溫的氮氣氣氛中,鋁粉直接與氮氣化合生成氮化鋁粉體,其化學反應式為2Al(s)+N2(g)→2AlN(s),反應溫度在800℃-1200℃。其優點是工藝簡單,成本較低,適合工業大規模生產。其缺點是鋁粉表面有氮化物產生,導致氮氣不能滲透,轉化率低;反應速度快,反應過程難以控制;反應釋放出的熱量會導致粉體產生自燒結而形成團聚,從而使得粉體顆粒粗化,后期需要球磨粉碎,會摻入雜質。嘉興耐溫氮化硼商家氮化鋁耐熱、耐熔融金屬的侵蝕,對酸穩定,但在堿性溶液中易被侵蝕。
提高氮化鋁陶瓷熱導率的途徑:選擇合適的燒結工藝,微波燒結:微波燒結是利用微波與介質的相互作用產生介電損耗使坯體整體加熱的燒結方法。同時,微波可以使粉末顆粒活性提高,有利于物質的傳遞。微波燒結已成為一門新型的陶瓷燒結技術,它利用整體性自身加熱,使材料加熱的效率提高,升溫速度加快,保溫時間縮短,這有利于提高致密化速度并可以有效抑制晶粒生長,獲得獨特的性能和結構。放電等離子燒結:放電等離子燒結系統利用脈沖能、放電脈沖壓力和焦耳熱產生的瞬間高溫場來實現燒結過程。SPS升溫速度快、燒結時間短、能在較低溫度下燒結,通過控制燒結組分與工藝能實現溫度梯度場,可用于燒結梯度材料及大型工件等復雜材料。放電等離子燒結內每個顆粒均勻的自身發熱使顆粒表現活化,因而具有很高的熱導率,可在短時間內使燒結體致密化。
AlN陶瓷金屬化的方法主要有:化學鍍金屬化法是在沒有外電流通過的情況下,利用還原劑將溶液中的金屬離子還原在呈催化活性的物體表面上,在物體表面形成金屬鍍層。化學鍍法金屬化的結合強度很大程度上依賴于基體表面的粗糙度,在一定范圍內,基體表面的粗糙度越大,結合強度越高;另一方面,化學鍍金屬化法的附著性不佳,且金屬圖形的制備仍需圖形化工藝實現。激光金屬化法利用激光的熱效應使AlN表面發生熱分解,直接生成金屬導電層。激光照射到AlN陶瓷表面后,陶瓷表面吸收激光的能量,表面溫度上升。當AlN表面溫度達到熱分解溫度時,AlN表面就會發生熱分解,析出金屬鋁。具有成本低、效率高、設備維護簡單等優點,在生產實踐中得到了較廣的應用。但是,激光金屬化也同樣面臨著許多問題,如:金屬化層表面生成團聚物并呈多孔性,金屬化層的附著性差和金屬厚度不均等。氮化鋁陶瓷基片,熱導率高,膨脹系數低,強度高,耐高溫,耐化學腐蝕,電阻率高,介電損耗小。
氮化鋁于1877年合成。至1980年代,因氮化鋁是一種陶瓷絕緣體(聚晶體物料為 70-210 W?m?1?K?1,而單晶體更可高達 275 W?m?1?K?1 ),使氮化鋁有較高的傳熱能力,至使氮化鋁被大量應用于微電子學。與氧化鈹不同的是氮化鋁無毒。氮化鋁用金屬處理,能取代礬土及氧化鈹用于大量電子儀器。氮化鋁可通過氧化鋁和碳的還原作用或直接氮化金屬鋁來制備。氮化鋁是一種以共價鍵相連的物質,它有六角晶體結構,與硫化鋅、纖維鋅礦同形。此結構的空間組為P63mc。要以熱壓及焊接式才可制造出工業級的物料。物質在惰性的高溫環境中非常穩定。在空氣中,溫度高于700℃時,物質表面會發生氧化作用。在室溫下,物質表面仍能探測到5-10納米厚的氧化物薄膜。直至1370℃,氧化物薄膜仍可保護物質。但當溫度高于1370℃時,便會發生大量氧化作用。直至980℃,氮化鋁在氫氣及二氧化碳中仍相當穩定。礦物酸通過侵襲粒狀物質的界限使它慢慢溶解,而強堿則通過侵襲粒狀氮化鋁使它溶解。物質在水中會慢慢水解。氮化鋁可以抵抗大部分融解的鹽的侵襲,包括氯化物及冰晶石〔即六氟鋁酸鈉〕。氮化鋁陶瓷基板用量十分巨大。臺州球形氮化鋁粉體商家
復合材料,環氧樹脂/AlN復合材料作為封裝材料,需要良好的導熱散熱能力,且這種要求愈發嚴苛。高導熱氮化鋁多少錢
隨著電子和光電行業蓬勃發展,電子產品的功能越發,同時體積也越來越小,使集成電路(IC)和電子系統在半導體工業上也朝向高集成密度以及高功能化的方向發展。目前,封裝基板材料主要采用氧化鋁陶瓷或高分子材料,但隨著對電子零件的承載基板的要求越來越嚴格,它們的熱導率并不能滿足行業的需求,而AlN因具有良好的物理和化學性能逐步成了封裝材料的首要選擇。氮化鋁陶瓷室溫比較強度高,且不易受溫度變化影響,同時熱導率高(比氧化鋁高5-8倍)且熱膨脹系數低,所以耐熱沖擊好,能耐2200℃的極熱,是一種優良的耐熱沖材料及熱交換材料,作為熱交換材料,可望應用于燃氣輪機的熱交換器上。高導熱氮化鋁多少錢
上海布朗商行有限公司主要經營范圍是精細化學品,擁有一支專業技術團隊和良好的市場口碑。上海布朗商行致力于為客戶提供良好的三防漆,防濕劑,化學品原料,電子機械,一切以用戶需求為中心,深受廣大客戶的歡迎。公司將不斷增強企業重點競爭力,努力學習行業知識,遵守行業規范,植根于精細化學品行業的發展。上海布朗商行憑借創新的產品、專業的服務、眾多的成功案例積累起來的聲譽和口碑,讓企業發展再上新高。