在深亞微米(0.15μm及以下)集成電路制造中,后段工藝日趨重要,為降低阻容遲滯(RCDelay),保證信號傳輸,減小功耗,有必要對后段工藝進行改進,Via阻擋層MOCVD(Metal-organicChemicalVaporDeposition,金屬有機物化學氣相淀積)TiN是其中重要研究課題之一。本論文基于薄膜電阻的理論分析,從厚度、雜質濃度和晶體結構三大薄膜電阻影響因素出發系統研究MOCVDTiN材料在平面薄膜上和真實結構中的各種性質,重點是等離子體處理(PlasmaTreatment,PT)下的晶體生長,制備循環次數的選擇對薄膜雜質濃度、晶體結構及電阻性能的影響,不同工藝薄膜在真實結構中物理形貌、晶體結構和電阻性能的表現和規律,超薄TiN薄膜(<5nm)的實際應用等。俄歇能譜、透射電子顯微鏡和方塊電阻測試證明PT作用下雜質濃度降低,同時晶體生長,薄膜致密化而電阻率降低。PT具有飽和時間和深度,較厚薄膜需多循環制備以充分處理,發現薄膜厚度較小時(本實驗條件下為4nm),增加循環次數雖然進一步降低了雜質濃度,但會引入界面而使薄膜電阻率增加。通過TEM觀測發現由于等離子體運動的各向異性,真實結構中PT效率在側壁遠低于頂部和底部,這導致側壁薄膜在PT后更厚。在刀具上涂敷3~5微米的氮化鈦涂層,刀具就能擁有更高的耐磨性和耐熱性,大幅提高刀具壽命和切削加工效率。常州涂層氮化鈦功能
TiN和TiAlN涂層常應用于精沖模,采用XRD技術分析了不同厚度TiN和TiAlN涂層的相變化,并采用Sin2ψ法測量了TiN涂層和基體以及TiAlN基體的殘留應力,應用顯微硬度計測量了涂層的顯微硬度。結果表明:TiN涂層(111)和(222)晶面存在明顯擇優取向,涂層殘留應力分布在-2347~-1920MPa,基體殘留應力分布在-154.9~-69.21MPa,均隨厚度增加而減小;TiAlN涂層主要相成分為Ti3Al3N2,且(107)晶面存在擇優取向,基體殘留應力分布在-123.7~469.5MPa,主要呈拉應力狀態,且隨厚度增加而增大,對模具壽命有較大影響;TiN和TiAlN涂層顯微硬度隨厚度增加而增大。溫州鍍鈦氮化鈦DLC涂層相對光滑,粗糙度Ra為0.10μm,而TiN涂層Ra為0.16μm。
50.本實驗應用離子束輔助沉積技術在磁性附著體銜鐵鐵鉻鉬合金表面制備氮化鈦納米膜,希望通過氮化鈦納米膜優異的理化性能,增強磁性附著體的耐蝕性和耐磨性,從而改進磁性附著體的性能,并且對鐵鉻鉬合金材料本體特性沒有影響。實驗結果表明:第四軍醫大學碩土學垃論文1.離子束輔助沉積技術可以在鐵鉻銅軟磁合金表面獲得非常致密與基體結合力極強的氮化鈦納米膜,膜與基體界面的結合力在65N—75N之間,完全能夠滿足實驗及臨床長期應用。2.鐵鉻鑰合金表面鍍氮化鈦納米膜處理前后磁性附著體磁力數值無明顯改變,方差分析統計學處理,p勸.05,無統計學差別。即鍍膜后磁固位力無改變。對磁性附著體的銜鐵軟磁合金進行鍍膜處理,來研究改進磁性附著體性能是可行的c3.由自腐蝕電位所反映的腐蝕傾向;極化曲線反映的耐腐蝕性能;極化電阻、腐蝕電流密度反映的腐蝕速度等電化學指標均表明經IBAD制備氮化鈦納米膜的鐵鉻鋁合金較未做表面鍍膜處理的合金耐腐蝕性高。4.制備氮化鈦納米膜組顯微硬度值明顯高于未鍍膜組有明顯性差異,氮化鈦納米膜能夠明顯提高鐵鉻用合金的顯微硬度,增強其耐磨性能。
相關研究顯示,由于氮化鈦(TiN)屬于生物相容性較好的材料(曾經被用于冠脈支架),因此血栓源性要遠低于鎳鈦本身。早在2004年,先健科技(深圳)有限公司就針對這一醫學困擾研發推出了一種采用高能離子沉淀涂層技術的Cera陶瓷膜封堵器,在原鎳鈦合金封堵器設計的基礎上保持原房間隔封堵器、室間隔封堵器、動脈導管未閉封堵器設計外形,利用等離子技術,在其鎳鈦合金表面均勻包裹一層氮化鈦TiN薄膜,采用離子技術,使金屬鈦鍍層與C、N、O等化合轉化為生物涂層,很大程度上提高了封堵器的耐腐蝕性以及生物組織和血液相容性。根據從Cera陶瓷膜封堵器和普通鎳鈦封堵器的動物實驗數據對比可看出:在細胞爬覆生長性能上,Cera陶瓷膜封堵器要遠優于普通鎳鈦封堵器,在提高使先心病缺損的修復的同時較好降低了血栓的風險;血小板黏附及溶血率也遠低于普通鎳鈦封堵器。44、氮化鈦 ( Ti N)薄膜獨特的性能不僅在機械工業和商品的表面裝飾行業上有著適合的應用。
氮化鈦的制備方法有哪些1金屬鈦粉或TiH2直接氮化法2TiO2碳熱還原氮化法3微波碳熱還原法4物物理相沉積法5化學氣相沉積法6機械合金化法7熔鹽合成法8溶膠-凝膠法9自蔓延高溫合成法TiN的性質及結構。TiN屬于間隙相,熔點高達2955℃,原子之間的結合為共價鍵、金屬鍵及離子鍵的混合鍵,其中金屬原子間存在金屬鍵。因此,TiN薄膜具有高硬度(理論硬度21GPa)、優異的耐熱耐磨和耐腐蝕等特性,并且具有較好的金屬特性:金屬光澤、優良的導電性及超導性。TiN具有典型的NaCl型結構,屬于面心立方點陣(F.C.C),其中Ti原子占據面心立方的角頂。并且TiN是非計量化合物,Ti和N組成的化合物TiN1-x可以在很寬的組成范圍內穩定存在,其范圍為TiN0.6—TiN1.16。氮的含量可在一定范圍內變化而不引起TiN的結構變化。氮化鈦涂層可降低牙科鑄造合金,尤其是賤金屬合金的腐蝕傾向,提高其耐蝕性。寧波真空鍍膜氮化鈦功能
我國對氮化鈦涂層刀具的使用起步較晚,但已有不少廠家開始推廣使用,經濟效益極為可觀。常州涂層氮化鈦功能
薄膜材料簡介制造業中高速切削和干式切削等先進技術的發展對刀具提出了較高的要求,作為刀具涂層的薄膜材料TiN不僅要具有較高的硬度,而且要具有優良的耐磨性、耐熱性、韌性和良好的化學穩定性等。硬質薄膜表面涂層可以實現上述要求。硬質薄膜表面涂層通常指為提高構件表面耐磨性、耐腐蝕性、耐高溫性而涂覆于構件表面的膜層,厚度為幾納米到幾十微米,材料通常是一些由過渡族金屬與非金屬構成的金屬間化合物等。這些化合物一般由金屬鍵、共價鍵、離子鍵,以及離子鍵和金屬鍵的混合鍵鍵合,具有熔點高、硬度大的特征,通常還具有良好的化學穩定性和熱穩定性?;谝陨咸卣骱蛢烖c,硬質薄膜表面涂層已被廣泛應用于航空、工模具、電子等加工領域,并且在刀具、模具等方面有力推動了制造業的發展。氮化鈦是第一種產業化并被廣泛應用的硬質薄膜材料。氮化鈦薄膜具有硬度高、耐磨、耐熱、耐腐蝕等特性[1],為面心立方晶體結構,由金屬鍵、共價鍵和離子鍵混合而成,同時具有金屬晶體和共價晶體的特性。常州涂層氮化鈦功能