本實用新型涉及吊裝裝置技術領域,具體為一種橋梁施工吊裝裝置。背景技術:橋梁是指架設在江河湖海上的交通運輸方式,橋梁建設加速了交通行業的發展,而橋梁在建設的過程中,吊裝裝置是其不可缺少的重要部分,吊裝裝置通常是用于物體的轉移,現今市場上的此類吊裝裝置種類繁多,基本可以滿足人們的使用需求,但是依然存在一定的問題,具體問題有以下幾點:(1)傳統的此類吊裝裝置,在使用時由于吊桿不便夠移動,從而不便對其進行角度調節;(2)傳統的此類吊裝裝置,在使用時由于該裝置在復雜不平穩的地方移動時,會出現吊裝物料不穩定的現象;(3)傳統的此類吊裝裝置,在使用時由于該吊裝裝置只具有一個吊鉤,從而不能保證吊裝所吊著的物體的安全性。橋梁總跨徑必須保證橋下有足夠的泄洪面積。無錫寬腹橋梁工程
我國路橋建設發展非常迅速,以往常見的橋梁施工方式為工地現場澆筑。隨著城市的不斷發展,在城市區域采用現澆方式施工橋梁各構件已越來越受周邊環境要求及施工條件的限制。因此,橋梁構件工廠全預制化生產模式得到越來越的應用。不管是現場澆注還是全預制化生產模式,在蓋梁施工中,都需要對蓋梁鋼筋進行籠綁扎,在鋼筋籠綁扎過程中,需要對鋼筋進行定位和固定,保證鋼筋能夠形成需要的形狀,但是現有的蓋梁鋼筋籠綁扎平臺不可調節,一種蓋梁對應一種平臺,同一種可調節蓋梁鋼筋籠綁扎平臺不可適配不同的蓋梁,造成蓋梁制造成本提高。因此需要設計一種結構合理,可以適配不同尺寸蓋梁的蓋梁鋼筋籠綁扎平臺,且要保證結構的穩定性和調整的便利性。揚州寬腹橋梁拱橋的基本組成結構與梁橋一樣,?主要組成部分為上部結構和下部結構兩部分組成。
在高架橋梁的路橋施工中,為了提高橋路施工的效率,大多需的高架橋梁采用裝配式安裝施工方式,節省路橋施工現場的空間利用和路橋施工的所需耗時,直接將橋梁搭建安裝于澆筑施工的橋墩之上,操作便捷,施工效率快,在高架橋梁的安裝使用時,為了提高橋梁搭建的穩定效果,防止橋梁出現使用時的坍塌失穩,從而需要安裝托舉裝置,對高架橋梁輔助支撐,進行高架橋梁使用時的支撐加固。然而現有的高架橋梁托舉裝置在使用時存在以下問題:1、在進行裝置的安裝使用時,裝置的定位加固操作不便,不能夠在橋梁上進行快速的穩定安裝,并且難以對橋梁的底部進行向上的推動加固,裝置進行橋梁的底部支撐時,易出現支撐縫隙,影響其托舉效果,而且長期安裝易松動脫落。2、托舉裝置在使用時,對橋梁底部的支撐托舉面小,對橋梁的支撐托舉穩定性不足,并且在橋梁的安裝使用時,難以對橋梁使用時的振動作用力進行削弱,不能夠對安裝使用的橋梁進行減震防護,存在使用缺陷。針對上述問題,急需在原有高架橋梁托舉裝置的基礎上進行創新設計。技術實現要素:本發明的目的在于提供一種用于路橋施工的高架橋梁托舉裝置,以解決上述背景技術提出現有的高架橋梁托舉裝置在進行裝置的安裝使用時。
千斤頂及臨時支撐設置:在搭設好的支架上安放液壓千斤頂和墊塊,并在其上放置橋梁頂升橫梁。在橋梁頂升橫梁上,對應邊板邊緣和中板鉸縫處安裝組合鋼楔,并予以調整,使上部構造每個板角均勻受力。千斤頂采用同一規格型號(50t液壓千斤頂)。千斤頂上下均應設置鋼墊板以分散集中力的作用。同一斷面的千斤頂上鋼墊板應采用與橋寬一致的型鋼墊板,以使橋梁整體受力。為確保受力均勻,應將型鋼墊板與板底的接觸面按板底橫坡一致的方向做成斜面。型鋼墊板的剛度應在施工時進行驗算。在每個千斤頂周圍設置臨時鋼支撐,以便于分級橋梁頂升過程中的檢測與調整。每節鋼支撐的長度應與千斤頂的行程相適應。由于千斤頂安裝、橋梁頂升的同步精度及回落后臨時支撐安裝等多種因素的影響,在橋梁頂升過程中往往會產生水平偏轉,嚴重時將直接影響橋梁安全。進行結構限位是控制偏轉的主要方法,限位一般包括橫向限位和縱向限位。限位裝置的設計是確保橋梁頂升成功的必備要素。汽車荷載分級:公里-Ⅰ級和公路-Ⅱ級。
橋梁切割拆除:對支撐梁進行支撐,使用切割方法對梁體進行切割分塊,使用吊機吊到基坑邊破碎或運到指定地點再進行破碎回收鋼筋。使用切割拆除比較大的局限在于基坑周邊能擺放大型吊機。優點是施工速度很快、使用趕工期的項目、能擺放大型吊機的情況下造價相對較低;缺點是對場地要求較高(需有擺放吊機的位置)、運輸困難費用高(如不能現場堆放及破碎)。切割及靜態破碎結合拆除:對于基坑局部能擺放大型吊機而又有局部有局限性的,水下切割工程可以采取機械切割和靜態破碎同時施工的方法,該方法可以比較大限度保證施工工期,同時對切割及破碎班組人員數量要求相對較低。腰梁拆除:腰梁拆除一般建議使用靜態破碎方法拆除,因腰梁一側與連續墻連接,如使用切割方法施工費用會很高。橋梁分為上部結構(橋跨結構)和下部結構,下部結構包括橋墩、橋臺、基礎。南京實心橋梁工程
汽車荷載分類:車道荷載和車輛荷載。無錫寬腹橋梁工程
國內外預應力混凝土連續箱梁橋普遍存在下撓和箱梁開裂問題,傳統加固方法延緩橋梁病害的發生,未從根本上解決問題。目前,本領域多采用一種斜拉索體系對箱梁橋進行加固,該體系能有效解決主梁跨中下撓和抗剪承載力不足。加固體系的傳力構造為通過張拉箱梁兩側新增斜拉索,將索力傳遞給新增鋼箱梁,新增鋼箱梁通過與箱梁底板的錨固連接裝置傳遞給主梁;主梁錨固連接裝置的錨固可靠性及體系轉換后控制箱梁應力增量是衡量加固效果的關鍵技術問題。發明人發現,錨固連接裝置的錨固性能可通過增加植筋數量來提高接觸面的抗剪能力,確保主梁與錨固連接裝置錨固的可靠連接,同時密集植筋方式會引起箱梁錨固區的結構安全問題及增加改造工程的成本;針對此類問題,還有一種“斜拉索加固體系的錨固轉換裝置”雖能在確保錨固可靠的前提下大量縮減植筋數量,但其轉換裝置中的“鋸齒形結構”對連接板的加工工藝要求較高;另外,對于薄壁箱梁來說,箱梁底板與腹板連接處承受新增鋼箱梁傳遞的壓力,極易造成箱梁局部混凝土開裂,因此優化錨固裝置是有必要的;實橋試驗表明,張拉施工使長索間箱梁頂板和短索至墩根間底板的壓應力減小,體系轉換后短索至墩根間底板壓應力降低會長期存在。無錫寬腹橋梁工程