研究結果發現:在相同石墨烯總添加量的情況下(3wt.%inparaffins),以不同石墨烯懸浮液(10wt.%、20wt.%、30wt.%))所配制的石蠟PCM復合材料,其導熱系數的提升值極為近似;熔滴點實驗顯示:上述三種石墨烯懸浮液配方均可得到穩定的熔滴點提升,其中,30wt.%配方所得石蠟PCM復合材料之熔滴溫度提升效果比較好,從℃上升至℃,證明添加石墨烯可使石蠟相變材料更快達到定型的效果。石墨烯的分散性對PCM復合材料的熱性質提升至為關鍵,先導研究發現:單以添加石墨烯粉體的方式,無法得到均勻的石蠟PCM復合材料,若改以石墨烯懸浮液的方式添加,則可大幅改善其分散性。進一步研究發現:若再添加適量的「界面活性劑,surfactant],則可得到更為均勻的石蠟PCM復合材料。 相變儲熱具有溫度恒定和儲熱密度大的優點。甘肅太陽能儲熱生產廠
顯熱儲熱材料應用比較多,而相變和熱化學儲熱系統的儲熱密度高,相變儲熱系統已經慢慢開始了一些商業化應用,熱化學儲熱系統由于系統的復雜性,目前沒有進行大規模的應用,還處于實驗室階段。,相變儲熱有儲熱密度高、溫度變化小兩個特點。在常見的相變儲熱材料應用中,我們希望其具有高導熱系數、合適的相變點、高比熱容、低腐蝕性和良好的循環穩定性等優點,但是同時滿足這些性質的儲熱材料是不存在的。目前中高溫相變儲熱技術問題有三點:一是循環穩定性需要進一步的驗證,二是腐蝕性問題,三是相變材料在相變過程中可能會發生體積變化,而體積變化可能會帶來接觸不良,導致局部的熱阻過高,造成一些安全問題。哈爾濱家庭用采暖系統生產廠家儲熱系統運行的自動化程度高。
潛熱蓄熱是利用相變材料發生相變時吸收或放出熱量來實現能量的儲存,具有單位質量(體積)蓄熱量大、溫度波動小(儲、放熱過程近似等溫)、化學穩定性好和安全性好等特點。常見的相變過程主要有固-液、固-固相變兩種類型。固-液相變是通過相變材料的熔化過程來進行熱量儲存,凝固過程來放出熱量;而固-固相變則是通過相變材料的晶體結構發生改變或固體結構進行有序-無序的轉變而可逆地進行儲、放熱。當前正在考慮的潛熱蓄熱材料有:氟化物、硫酸鹽、硝酸鹽以及石蠟等有機蓄熱材料。
儲熱介質吸收太陽輻射或其他載體的熱量蓄存于介質內部,環境溫度低于介質溫度時熱量即釋放。熱量以顯熱、潛熱或兩者兼有的形式儲存。顯熱是靠儲熱介質的溫度升高來儲存。常溫下水和卵石均為常用的儲熱材料,水的儲熱量是同樣體積石塊的3倍。潛熱儲存是利用材料由固態熔化為液態時需要大量熔解熱的特性來吸收儲存熱量。熱量釋放后介質回到固態,相變反復循環形成貯存、釋放熱量的過程。值得指出的是儲熱技術并不單指儲存和利用高于環境溫度的熱能,而且包括儲存和利用低于環境溫度的熱能,即日常所說的儲冷。儲熱采暖系統,必須重點考慮儲熱裝置內冷熱水混合、死水區和儲熱效率等問題。
利用相變材料相變時單位質量(體積)潛熱,蓄熱量非常大能把熱能貯存起來加以利用,如空間太陽能發電用蓄熱器,深夜電力調峰用蓄熱器,其儲能比顯熱一個數量級,而且放熱溫度恒定,但其儲熱介質一般有過冷、相分離、易老化等缺點。根據相變種類的不同,相變蓄熱一般分為四類:固一固相變、固一液相變、液一氣相變及固一氣相變。由于后兩種相變方式在相變過程中伴隨有大量氣體的存在,使材料體積變化較大,因此盡管它們有很大的相變熱,但在實際應用中很少被選用,固一固相變和固一液相變是實際中采用較多的相變類型。根據材料性質的不同,一般來說相變蓄熱材料可分為:有機類、無機類及混合類相變蓄熱材料。其中,石蠟類、脂酸類是有機類中的典型相變蓄熱材料;結晶水合鹽、熔融鹽和金屬及合金等是無機類中的典型相變蓄熱材料。混合類又可分為:有機混合類、無機混合類及無機一有機混合類。 儲熱技術得到了普遍的研究。山西相變原理儲熱器費用
復合相變材料材料的復合化可將各種材料的優點綜合在一起。甘肅太陽能儲熱生產廠
蓄熱技術是提高能源利用效率和保護環境的重要技術,可用于解決熱能供給與需求失配的矛盾,在太陽能利用、電力“移峰填谷”、廢熱和余熱的回收利用以及工業與民用建筑和空調的節能等領域具有廣泛的應用前景,是世界范圍內的研究熱點.根據相變種類的不同,相變蓄熱一般分為四類:固一固相變、固一液相變、液一氣相變及固一氣相變。由于后兩種相變方式在相變過程中伴隨有大量氣體的存在,使材料體積變化較大,因此盡管它們有很大的相變熱,但在實際應用中很少被選用,固一固相變和固一液相變是實際中采用較多的相變類型。根據材料性質的不同,一般來說相變蓄熱材料可分為:有機類、無機類及混合類相變蓄熱材料。甘肅太陽能儲熱生產廠