相變儲熱的基本原理:將物質在等溫相變過程中釋放的相變潛熱通過盛裝相變儲熱材料的容器將能量儲存起來,待需要時再把熱(冷)能通過一定的方式釋放出來供需求者使用。相變儲熱材料的儲熱容量為相變過程中吸收或者釋放的熱量。化學反應儲熱的特點:(1)儲能密度高(2)正逆反應可以在高溫下進行(3)可以通過催化劑或將產物分離等方式,在常溫下長期儲存分解物。(4)可供懸著的材料較多。(5)許多化學反應生產物中的兩者或其中之一是氣體。儲熱是解決太陽能間隙性和不可靠性,有效利用太陽能的重要手段。山西儲熱系統多少錢
儲熱材料的研究目前主要是集中于顯熱儲熱材料和相變材料,尤以儲熱密度高、儲熱裝置結構緊湊的高溫相變材料為主,其中各種混合鹽類因其可以在中高溫工作區域內通過調節不同鹽類的配比來控制物質的熔融溫度而吸引了很多研究者的興趣。除了鹽類的簡單混合,研究人員正嘗試加入金屬合金以及其它復合材料并通過納微材料合成技術和納微尺度傳熱強化技術制備成滿足要求的納微結構儲熱材料,以解決其傳熱性能(導熱系數)、力學性能(強度)和化學穩定性較差的問題。黑龍江相變儲熱生產廠家儲熱技術得到了普遍的研究。
相變儲熱材料通過溫升讓分子型態發生轉變,而這一相變過程需要吸收熱量,從雃幫助產品實現控溫以及保持冷卻。借由溫度的改變,可控制物質的相轉移變化,進而調控能量的存儲與釋放,除了溫度外,近來更發現許多材料可以借由外在的驅動力,如壓力、光輻射、電流等方式進行相變化,增進對儲熱技術及系統的發展潛力。相變化材料可應用的范圍相當較多,例如結合太陽熱能發電整合運用,可以將太陽的熱能透過「熔鹽,moltensalt」作為儲熱介質及存儲能量,根據當時發電量需求進行調控,加熱產生過熱蒸氣以推動渦輪發電機而產生電力,不但轉換效率高且可彈性運用。儲熱材料亦可與一般的太陽能電池結合,進行熱能的管控,改善運轉時因溫度升高所造成電池效率降低的問題。綠建筑設計也有運用相變化材料的實例,將材料用于建筑物的外墻、天花板或地板中,當白天日照強時可儲存多余的熱量,有效吸收熱量避免室內溫度上升,到晚上氣溫下降時,由建材釋放出白天吸收的熱能可維持或提升室內溫度,如此可大幅降低冷暖氣機的使用量,以達成節能的效果。
利用相變材料相變時單位質量(體積)潛熱,蓄熱量非常大能把熱能貯存起來加以利用,如空間太陽能發電用蓄熱器,深夜電力調峰用蓄熱器,其儲能比顯熱一個數量級,而且放熱溫度恒定,但其儲熱介質一般有過冷、相分離、易老化等缺點。根據相變種類的不同,相變蓄熱一般分為四類:固一固相變、固一液相變、液一氣相變及固一氣相變。由于后兩種相變方式在相變過程中伴隨有大量氣體的存在,使材料體積變化較大,因此盡管它們有很大的相變熱,但在實際應用中很少被選用,固一固相變和固一液相變是實際中采用較多的相變類型。根據材料性質的不同,一般來說相變蓄熱材料可分為:有機類、無機類及混合類相變蓄熱材料。其中,石蠟類、脂酸類是有機類中的典型相變蓄熱材料;結晶水合鹽、熔融鹽和金屬及合金等是無機類中的典型相變蓄熱材料。混合類又可分為:有機混合類、無機混合類及無機一有機混合類。 復合相變材料材料的復合化可將各種材料的優點綜合在一起。
儲熱材料與應用技術能幫助我們更有效率地使用能源,目前已在特定領域中展現應用實例,但如何擴展使用溫度范圍、增進能量密度、降低成本、提升使用壽命及穩定性,仍需進一步針對材料特性、系統設計、原理機制等研究來大幅開發及驗證新的儲熱材料應用范疇。透過結合更多元的能源產生、使用及存儲技術(包含儲電及儲熱等),提升區域能源穩定性、可控制性及使用效率,將是逐步邁向低碳社會與綠色環境的重要路徑。相變化材料現今已逐步應用于冷藏運輸櫥柜、保溫設備、衣物、航太等領域中。儲熱系統是解決能源供應時間與空間矛盾的有效手段。天津電地暖采暖爐多少錢
理想的相變儲熱材料應具有適當的相變潛熱。山西儲熱系統多少錢
相變儲能利用的是材料在從一種物態到另外一種轉換過程中熱力學狀態(焓)的變化。比如冰在融化為水的過程中要從周圍環境吸收大量的熱量,而在重新凝固時又要放出大量的熱量。這種吸熱/放熱的過程中,材料溫度不變,即在很小的溫度變化范圍能帶來大量能量的轉換過程,是相變儲能的主要特點。相變材料在反復的相變過程中化學性能穩定,可多次循環利用,對環境友好,無毒,安全。相變材料發生相變時的體積變化小,容易儲存;放熱過程溫度變化穩定。山西儲熱系統多少錢