能量雖然可以以機械能、聲能、化學能、電磁能、光能、熱能及核能等多種形式存在,但在人類的活動中,絕大多數能量是需要經過熱能的形式和環節被轉化和利用的,尤其是在我國,這個比例達到90%以上。正因如此,儲熱技術較為簡單和普遍,它的應用也遠遠早于工業**尤其是電力**后才出現的其它儲能技術,如我國北方地區的燒炕取暖即是利用儲熱技術解決熱能供求在時間上的不匹配。隨著人類的發展和對能源利用技術的不斷改進,儲熱技術也不斷發展,而且在人們的生產和生活中,在能源的集中供應端和用戶端,都發揮著日益重要的作用。儲熱技術是世界范圍內的研究熱點。山西相變儲熱生產公司
儲熱材料的研究目前主要是集中于顯熱儲熱材料和相變材料,尤以儲熱密度高、儲熱裝置結構緊湊的高溫相變材料為主,其中各種混合鹽類因其可以在中高溫工作區域內通過調節不同鹽類的配比來控制物質的熔融溫度而吸引了很多研究者的興趣。除了鹽類的簡單混合,研究人員正嘗試加入金屬合金以及其它復合材料并通過納微材料合成技術和納微尺度傳熱強化技術制備成滿足要求的納微結構儲熱材料,以解決其傳熱性能(導熱系數)、力學性能(強度)和化學穩定性較差的問題。山西太陽能儲熱系統價格儲熱技術依據熱載體不同,可分為水儲熱和相變材料儲熱兩種。
儲熱技術包括兩個方面的要素,其一是熱能的轉化,它既包括熱能與其它形式的能之間的轉化,也包括熱能在不同物質載體之間的傳遞;其二為熱能的儲存,即熱能在物質載體上的存在狀態,理論上表現為其熱力學特征。雖然儲熱有顯熱儲熱、潛熱儲熱和化學反應儲熱等多種形式,但本質上均是物質中大量分子熱運動時的能量。因而從一般意義上講,熱能存儲的熱力學性質與熱力學性質相同,均有量和質兩個衡量特征,即熱力學中的***定律和第二定律。
潛熱儲能材料具有相當大的熱容量。熱量“潛藏”于此,一旦達到某一溫度,這種材料就開始吸收熱量,但是整個過程中它自身的溫度不會發生變化。其原理是添加于材料內部的小顆粒會利用吸收的熱量實現相變.如從固體轉化為液體。因此人們通常也將潛熱儲能材料稱作相變儲能材料(PCM)。已經可以在建筑材料內部添加分散、細小的石蠟顆粒。石蠟顆粒接觸熱量后會立即熔化.但不會導致溫度的升高。與未使用PCH處理過的墻體相比,做PCM處理的墻體在更長的時間段內墻體溫度明顯更低。以細小顆粒狀分散的石蠟一般被添加到石膏內層灰漿或墻體底漆內。在涼爽的夜間。石蠟重新凝固并在此過程中將熱量釋放出來。對于輕型建筑結構,同樣可以通過添加細小的顆粒狀分散的石蠟形成PCM。通過對夜間通風進行有效控制來降低建筑物的溫度。潛熱儲能首先適用于行政辦公建筑.它可以減少空調制冷的使用頻率或干脆無需空調制冷。儲熱能夠滿足用能連續和穩定供應的需要。
研究結果發現:在相同石墨烯總添加量的情況下(3wt.%inparaffins),以不同石墨烯懸浮液(10wt.%、20wt.%、30wt.%))所配制的石蠟PCM復合材料,其導熱系數的提升值極為近似;熔滴點實驗顯示:上述三種石墨烯懸浮液配方均可得到穩定的熔滴點提升,其中,30wt.%配方所得石蠟PCM復合材料之熔滴溫度提升效果比較好,從℃上升至℃,證明添加石墨烯可使石蠟相變材料更快達到定型的效果。石墨烯的分散性對PCM復合材料的熱性質提升至為關鍵,先導研究發現:單以添加石墨烯粉體的方式,無法得到均勻的石蠟PCM復合材料,若改以石墨烯懸浮液的方式添加,則可大幅改善其分散性。進一步研究發現:若再添加適量的「界面活性劑,surfactant],則可得到更為均勻的石蠟PCM復合材料。 儲熱技術得到了普遍的研究。內蒙古家庭自采暖系統制造商
制備復合相變材料是潛熱儲熱材料的一種必然的發展趨勢。山西相變儲熱生產公司
強野新能源是中國儲熱整體解決方案的供應商。提供行業先進的儲能技術與節能方案,實現更綠色環保的優化系統,倡導低碳生態環境。 強野(上海)科研團隊經過多年研發了一系列的無內置熱源相變儲熱設備,其自主研發的相變儲能材料通過瑞士SGS安全認證,并經過多達10500次高低溫周期循環試驗,始終穩定不衰減。在某一穩定的相變溫度范圍內吸收或者放出巨大熱量的特性。溫度范圍:-100℃~1000℃,儲熱密度是水的5~40倍。系統將峰谷電、清潔能源的消納和利用、工業余熱回收及工業節能等方面提供開創性的儲熱產品,為客戶帶來長達15年以上的投資回報。山西相變儲熱生產公司