機組加熱說明:機組采用儲能液在電加熱的作用下沖擊運動產生能量,以加熱儲能液實現制熱需求,全年運行穩定,不受環境影響。相變供熱機組遠程自動控制系統綜述采用全自動遠程系統,可根據客戶的使用要求對設備參數進行相應調節達到無人值守亦可正常運行,智能控制面板用來完成升溫參數的現場控制及現場邏輯事件處理。相變供熱機組特點:1、安全:機組導熱介質為儲能液,而不是直接加熱,保證安全;2、能效高:制熱效率可達160%以上,比傳統電鍋爐的輸入功率低1倍以上;3、常壓運行:機組常壓運行,無需辦理任何許可年檢手續;4、安裝簡單:占地面積很小,可在原鍋爐房內直接切改,充分利用原有管路設備及采暖末端;5、全自動運行:機組每天可設置多個運行時間段,根據使用要求設置后全自動運行,無需專人值守;6、運行穩定使用壽命長:機組故障率極低,運行能效不受氣候條件影響,四季制熱效率保持不變,使用壽命15年以上。 儲熱介質有水、水蒸汽、沙石等。相變原理儲熱器供應商
固液相變材料的分類多種多樣,按照相變時的相變溫度高低可以分為低溫(<100℃),中溫(100~200 ℃) 和高溫相變材料(200~1000 ℃)。除此之外,固液相變材料還可以按照化學性質分為有機與無機相變材料, 或者按照使用價格和成本分為經濟性與非經濟性相變材料。通常,經濟性與非經濟性相變蓄熱材料的主要區別在于價格是否適合大規模運用,有些相變材料雖然相變焓、熱穩定性等熱物性參數十分良好,但是其價格昂貴不適合大規模運用。天津太陽能儲熱供應商儲熱用水作載體有清潔、廉價、比熱值高的優點。
利用相變材料相變時單位質量(體積)潛熱,蓄熱量非常大能把熱能貯存起來加以利用,如空間太陽能發電用蓄熱器,深夜電力調峰用蓄熱器,其儲能比顯熱一個數量級,而且放熱溫度恒定,但其儲熱介質一般有過冷、相分離、易老化等缺點。根據相變種類的不同,相變蓄熱一般分為四類:固一固相變、固一液相變、液一氣相變及固一氣相變。由于后兩種相變方式在相變過程中伴隨有大量氣體的存在,使材料體積變化較大,因此盡管它們有很大的相變熱,但在實際應用中很少被選用,固一固相變和固一液相變是實際中采用較多的相變類型。根據材料性質的不同,一般來說相變蓄熱材料可分為:有機類、無機類及混合類相變蓄熱材料。其中,石蠟類、脂酸類是有機類中的典型相變蓄熱材料;結晶水合鹽、熔融鹽和金屬及合金等是無機類中的典型相變蓄熱材料?;旌项愑挚煞譃?有機混合類、無機混合類及無機一有機混合類。
蓄熱技術是提高能源利用效率和保護環境的重要技術,可用于解決熱能供給與需求失配的矛盾,在太陽能利用、電力“移峰填谷”、廢熱和余熱的回收利用以及工業與民用建筑和空調的節能等領域具有較多的應用前景,是世界范圍內的研究熱點.,主要的蓄熱方法有顯熱蓄熱、潛熱蓄熱和化學反應蓄熱三種.顯熱蓄熱是利用物質的溫度升高來存儲熱量的.利用陶瓷粒、水、油等的熱容進行蓄熱,把已經高溫或低溫變換的熱能貯存起來加以利用,如固體顯熱蓄熱的煉鐵熱風爐、蓄熱式熱交換器、蓄熱式燃燒器等,通常的顯熱蓄熱方式簡單,成本低,但儲存的熱量小,其放熱不能恒溫的缺點化學反應蓄熱是指利用可逆化學反應的結合熱儲存熱能.發生化學反應時,可以有催化荊,也可以沒有催化劑一種高密度高能量的蓄熱方式,它的儲能密度一般高于顯熱和潛熱,此種儲能體系通過催化劑和產物分離易于能量長期儲存.潛熱蓄熱(相變蓄熱)是利用物質在凝固/熔化、凝結/氣化、凝華/升華以及其他形式的相變過程中,都要吸收或放出相變潛熱的原理來進行能量儲存的技術。 儲熱是一種以相變儲能材料為基礎的高新儲能技術。
根據相變溫度高低,潛熱蓄熱又分為低溫和高溫兩部分。低溫潛熱蓄熱主要用于廢熱回收、太陽能儲存以及供暖和空調系統。高溫潛熱蓄熱可用于熱機、太陽能電站、磁流體發電以及人造衛星等方面。低溫相變材料主要有冰、石蠟等。高溫相變材料主要采用高溫熔化鹽類、混合鹽類和金屬及合金等。高溫熔化鹽類主要是氟化鹽、氯化物、硝酸鹽、碳酸鹽、硫酸鹽類物質。混合鹽類溫度范圍寬廣,熔化潛熱大,但鹽類腐蝕嚴重,會在容器表面結殼或結晶遲緩。因此,應用時要求較高。常見的潛熱儲存方法有冰蓄熱、蒸汽蓄熱、相變材料蓄熱等。儲熱是利用相變材料發生相變時吸收或放出熱量來實現能量的儲存。哈爾濱相變儲熱系統生產企業
儲熱在受熱或冷卻時發生可逆反應。相變原理儲熱器供應商
理論上可以發生相變過程的材料都可以用作相變材料,但是在實際挑選相變材料的過程中,必須考慮以下幾大因素:(1)熱物理性質因素,具體來說包含相變溫度保持適中、相變焓盡可能大和傳熱特性盡可能良好。在確定合適的相變材料來填充蓄熱系統時,必須使得系統加熱和冷卻的操作溫度符合相變材料的相變點,另外需要注意挑選材料的相變焓應越高越好,尤其是單位體積的相變焓應當越高,從而可以節省容器體積。除此以外,挑選相變材料的熱導率應當越高越好,這樣可以幫助蓄熱系統儲放熱。(2)物理因素,包含良好的相平衡、高密度、很小的體積變化以及較低的蒸汽壓力。加熱融化過程中的相穩定性有助于熱量的存儲,高密度可以使得容器設計時體積更小,較低的蒸汽壓力以及較小的體積變化有助于減少容器的氣密性問題。 相變原理儲熱器供應商