相變儲能供熱機組系統:1、機組加熱說明:機組采用儲能液在電加熱的作用下沖擊運動產生能量,以加熱儲能液實現制熱需求,全年運行穩定,不受環境影響。2、遠程自動控制系統綜述采用全自動遠程系統,可根據客戶的使用要求對設備參數進行相應調節達到無人值守亦可正常運行,智能控制面板用來完成升溫參數的現場控制及現場邏輯事件處理。高效相變儲能供熱機組采用儲能液在電加熱的作用下沖擊運動產生相變能量,采暖能效可達160%以上。全年運行穩定,不受環境影響,高寒地區優勢更為突出。環保相變儲能供熱機組通過電力驅動,因此不會產生CO2,同時在加熱儲能液過程中沒有燃燒加熱的過程,因此沒有燃燒廢氣的排放,并且機組運行噪音小,使環境更為健康。節能在額定條件下,相變儲能供熱機組在消耗1kw/h電力的情況下,就能提供。意味著2/3以上的熱量是Free的,大面積供暖領域節能效果更為突出。 儲熱具有溫度恒定和儲熱密度大的優點。河南電地熱采暖器
潛熱蓄熱是利用相變材料發生相變時吸收或放出熱量來實現能量的儲存,具有單位質量(體積)蓄熱量大、溫度波動小(儲、放熱過程近似等溫)、化學穩定性好和安全性好等特點。常見的相變過程主要有固-液、固-固相變兩種類型。固-液相變是通過相變材料的熔化過程來進行熱量儲存,凝固過程來放出熱量;而固-固相變則是通過相變材料的晶體結構發生改變或固體結構進行有序-無序的轉變而可逆地進行儲、放熱。當前正在考慮的潛熱蓄熱材料有:氟化物、硫酸鹽、硝酸鹽以及石蠟等有機蓄熱材料。沈陽電地熱采暖器哪個牌子好理想的相變儲熱材料應無毒、不燃、對環境無污染作用等。
相變儲能利用的是材料在從一種物態到另外一種轉換過程中熱力學狀態(焓)的變化。比如冰在融化為水的過程中要從周圍環境吸收大量的熱量,而在重新凝固時又要放出大量的熱量。這種吸熱/放熱的過程中,材料溫度不變,即在很小的溫度變化范圍能帶來大量能量的轉換過程,是相變儲能的主要特點。相變材料在反復的相變過程中化學性能穩定,可多次循環利用,對環境友好,無毒,安全。相變材料發生相變時的體積變化小,容易儲存;放熱過程溫度變化穩定。
儲熱材料的研究目前主要是集中于顯熱儲熱材料和相變材料,尤以儲熱密度高、儲熱裝置結構緊湊的高溫相變材料為主,其中各種混合鹽類因其可以在中高溫工作區域內通過調節不同鹽類的配比來控制物質的熔融溫度而吸引了很多研究者的興趣。除了鹽類的簡單混合,研究人員正嘗試加入金屬合金以及其它復合材料并通過納微材料合成技術和納微尺度傳熱強化技術制備成滿足要求的納微結構儲熱材料,以解決其傳熱性能(導熱系數)、力學性能(強度)和化學穩定性較差的問題。儲熱材料應對容器材料無腐蝕作用。
根據相變溫度高低,潛熱蓄熱又分為低溫和高溫兩部分。低溫潛熱蓄熱主要用于廢熱回收、太陽能儲存以及供暖和空調系統。高溫潛熱蓄熱可用于熱機、太陽能電站、磁流體發電以及人造衛星等方面。低溫相變材料主要有冰、石蠟等。高溫相變材料主要采用高溫熔化鹽類、混合鹽類和金屬及合金等。高溫熔化鹽類主要是氟化鹽、氯化物、硝酸鹽、碳酸鹽、硫酸鹽類物質。混合鹽類溫度范圍寬廣,熔化潛熱大,但鹽類腐蝕嚴重,會在容器表面結殼或結晶遲緩。因此,應用時要求較高。常見的潛熱儲存方法有冰蓄熱、蒸汽蓄熱、相變材料蓄熱等。儲熱材料要來源方便,容易得到。哈爾濱家庭地采暖系統生產公司
儲熱在受熱或冷卻時發生可逆反應。河南電地熱采暖器
相變化材料現今已逐步應用于冷藏運輸櫥柜、保溫設備、衣物、航太等領域中。除此之外,科學家也持續努力地開發具有突破性的新儲熱材料,日本東京大學化學系S.Ohkoshi與筑波大學數理物質系HirokoTokoro教授,研究相變化儲熱陶瓷材料,發現特殊型態氧化鈦于室溫至530K之間,存在入相及β相之固態–固態相轉變,而相變化潛熱值達230KJ/L,且入相可借由外施加極小壓力即能造成相轉變為β相同時將儲存的大量潛熱釋出,而轉換β相后,亦可經由加熱、照光,甚至通電流的方式,回復到N相。因此,這個材料除了一般的儲熱模式外,尚能吸收多余電力或太陽光等能量,將不同型態能量存儲在此特殊材料中,并于適當控制外加壓力時釋出能量,達到能量存儲或釋放,該研究成果刊登在2015年《NatureCommunications》期刊中,其后續發展與應用值得關注。河南電地熱采暖器