根據相變溫度高低,潛熱蓄熱又分為低溫和高溫兩部分。低溫潛熱蓄熱主要用于廢熱回收、太陽能儲存以及供暖和空調系統。高溫潛熱蓄熱可用于熱機、太陽能電站、磁流體發電以及人造衛星等方面。低溫相變材料主要有冰、石蠟等。高溫相變材料主要采用高溫熔化鹽類、混合鹽類和金屬及合金等。高溫熔化鹽類主要是氟化鹽、氯化物、硝酸鹽、碳酸鹽、硫酸鹽類物質。混合鹽類溫度范圍寬廣,熔化潛熱大,但鹽類腐蝕嚴重,會在容器表面結殼或結晶遲緩。因此,應用時要求較高。常見的潛熱儲存方法有冰蓄熱、蒸汽蓄熱、相變材料蓄熱等。儲熱技術可用于解決熱能供給與需求失配的矛盾。長春相變儲熱原理多少錢
儲熱雖然具有很強的競爭力和巨大的應用前景,所受到的重視程度卻仍需要加強。據報告統計介紹,全球儲能方向所發表的文章主要在鋰離子電池和儲熱兩個方向,這兩個儲能技術方向在2009年以前每年發表的文章數相當,但到2015年鋰離子電池方向的文章總數約為3500篇,是儲熱方向文章數的3.5倍。而從近十年的趨勢來看,鋰電子方向現有數遠超出儲熱方面,在2006年到2015年間的增速同樣超出儲熱方向,可見儲熱在近年全球儲能發展中還未得到爆發增長,與抽水蓄能等其他成熟的儲能技術相比,還處于剛剛起步到初步應用的階段。不過,根據數據統計,儲熱的體量已經有所上升,的全球統計數據顯示,儲熱在儲能中占的比例越來越高,儲熱裝機已經達到14GW。同時因近幾年中國清潔供暖的需求,過去幾年中國已有約4GW以上的儲熱裝機。總的來看,全球儲能的市場接近千億美元量級,其中中國也具有很大的市場空間。北京太陽能儲熱供貨商儲熱技術是世界范圍內的研究熱點。
相變供熱是一種以相變儲能材料為基礎的高新儲能技術,主要分為熱化學儲熱、顯熱儲熱和相變儲熱,熱化學儲熱雖然蓄熱密度大,但不安全且蓄熱過程不可控,嚴重影響其推廣應用,顯熱儲熱是目前應用較廣的一種儲熱方式,然而它的儲熱密度小,相比之下,相變儲熱的儲熱密度是顯熱儲熱的5~10倍甚至更高,由于具有溫度恒定和蓄熱密度大的優點,相變蓄熱技術得到了較多的研究,尤其適用于熱量供給不連續或供給與需求不協調的工況下,相變儲熱系統作為解決能源供應時間與空間矛盾的有效手段,是提高能源利用率的重要途徑之一。
在相同的溫度變化的條件下,儲冷比儲熱的質更高,尤其是在與環境溫度相差較大的情況下,即相對于儲熱,深冷儲能可以更加有效地儲存高品位的能量,這也是深冷儲能技術近期在規模儲電領域興起的原因。值得指出的是,在當前能源供應日益緊張的情況下,高效高品位的儲能技術越來越引起人們的興趣,即更加注重儲能的質而非簡單關注量的大小,而密度是衡量這種質的較有效標準。當然,儲熱技術的性能除了受到儲熱介質密度等狀態量的影響外,還受到介質本身在熱量交換和轉化等過程性能的影響。這些過程量包括介質的換熱性能及流動性能(儲熱介質本身也可能是換熱工質)等,即在理論上表現為傳熱學和流體力學方面的特征。理想的相變儲熱材料應無毒、不燃、對環境無污染作用等。
儲熱技術的主要作用有哪些?①儲熱技術可以儲存太陽能輻射的熱量,滿足供熱,供電,采暖,工業生產等方面對熱能的需求。②發電廠中應用儲熱技術,可以經濟地解決高峰負荷問題,填平需求低谷,節約燃料,還可對余熱廢熱儲存,減少污染氣體排放。③在工業加工及熱能儲存中應用可回收余熱,減少冷卻過程水的消耗,減少空氣污染。④相變儲能材料熱容較大,可用在建筑業中。儲熱技術能夠提高能源利用率和保護環境,可用于解決熱能供給與需求不平衡以及熱能供應在時間和空間上的矛盾,通過對儲熱技術的運用。能源的利用效率得以很大提高。根據能源來源不同,可以將能量產生分為太陽能、風能、生物質能、核能、熱能、機械能、化學能、電磁能等八大類。儲熱系統無噪聲,無污染,無明火,消防要求低。甘肅電地熱采暖
儲熱相變材料主要包括石蠟,脂肪酸及其他種類。長春相變儲熱原理多少錢
潛熱儲能材料具有相當大的熱容量。熱量“潛藏”于此,一旦達到某一溫度,這種材料就開始吸收熱量,但是整個過程中它自身的溫度不會發生變化。其原理是添加于材料內部的小顆粒會利用吸收的熱量實現相變.如從固體轉化為液體。因此人們通常也將潛熱儲能材料稱作相變儲能材料(PCM)。已經可以在建筑材料內部添加分散、細小的石蠟顆粒。石蠟顆粒接觸熱量后會立即熔化.但不會導致溫度的升高。與未使用PCH處理過的墻體相比,做PCM處理的墻體在更長的時間段內墻體溫度明顯更低。以細小顆粒狀分散的石蠟一般被添加到石膏內層灰漿或墻體底漆內。在涼爽的夜間。石蠟重新凝固并在此過程中將熱量釋放出來。對于輕型建筑結構,同樣可以通過添加細小的顆粒狀分散的石蠟形成PCM。通過對夜間通風進行有效控制來降低建筑物的溫度。潛熱儲能首先適用于行政辦公建筑.它可以減少空調制冷的使用頻率或干脆無需空調制冷。長春相變儲熱原理多少錢