輪邊支撐軸構造原理前后橋輪邊支承軸均為整體鍛件結構,具有較高的強度通過一組螺栓(10.9級)與橋殼兩端法蘭面聯接,共同構成了整個驅動橋的骨架輪邊支承軸與橋殼是驅動橋其它所有零件的支撐母體,并承受整機重量。輪式驅動橋終傳動裝置(輪邊減速器)輪轂:也稱輪殼,是輪邊減速器的支撐母體,通過兩只軸承支承并繞輪邊支承軸轉動。太陽輪:與半軸通過花鍵聯接,為輪邊減速器的主動輪。內齒圈:通過花鍵與輪邊支承軸固定聯接,固定不動行星齒輪:單個輪邊減速器有三只,均布于太陽輪和內齒圈之間,行星齒輪內孔是光孔,通過行星齒輪軸及滾針軸承固定在行星輪架上。行星輪架:與輪轂通過螺栓聯接,在行星齒輪軸的帶動下旋轉從而輸出動力。給行駛過程中的汽車以足夠充足的牽引力和行車速度變化;江門品質輪挖驅動橋
輪式驅動橋主傳動機構調整主動和從動齒輪之間必須有正確的相對位置,方能使兩齒輪嚙合傳動時沖擊噪聲較小,而且輪齒沿其長度方向磨損較均勻。為此,在結構上一方面要使主動和從動錐齒輪有足夠的支承剛度,使其在傳動過程中不至于發生較大變形而影響正常嚙合;另一方面應有必要的嚙合調整裝置。輪式驅動橋主傳動機構調整一般的裝配與調整順序:單級主減速器,應先進行差速器的裝配和調整,然后調整主、從動錐齒輪的軸承預緊度,***調整主、從動錐齒輪的接觸印痕和嚙合間隙。雙級主減速器,應先調整主、從動錐齒輪的裝配和軸承預緊度,然后調整齒輪接觸印痕和嚙合間隙。差速器的裝配調整可在***進行。吉安優勢輪挖驅動橋驅動橋一般由主減速器、差速器、車輪傳動裝置和驅動橋殼等組成;
輪式驅動橋主傳動機構調整(2)嚙合間隙的檢查:把百分表抵在從動錐齒輪輪齒大端的凸面,對圓周均勻分布的不少于4個齒進行測量。或將一細保險絲(鉛絲)放在從動錐齒輪齒面上,轉動齒輪擠壓保險絲,保險絲的厚度值即為嚙合間隙值。(3)嚙合印痕和嚙合間隙的調整應同時進行。 輪式驅動橋主傳動機構調整(4)主、從動錐齒輪嚙合間隙的調整通過移動從動齒輪的位置可以調整嚙合間隙,當嚙合間隙過大時,應使從動齒輪靠近主動齒輪,反之則相反移動。如EQ1090,移動差速器軸承調整螺母可調整從動齒輪的位置,為保持差速器軸承的預緊度不變,一端調整螺母擰松(或擰緊)多少,另一端調整螺母則相應擰緊(或擰松)多少。齒隙的數值可用百分表在從動齒輪輪齒大端上測量,并應測量沿圓周均布的三個以上的齒。
1)全浮式半軸半軸是將差速器傳來的扭矩再傳給車輪,驅動車輪旋轉,推動汽車行駛的實心軸。由于輪轂的安裝結構不同,而半軸的受力情況也不同。所以,半軸分為全浮式、半浮式、3/4浮式三種型式。3.半軸大多數汽車采用行星齒輪式差速器,普通錐齒輪差速器由兩個或四個圓錐行星齒輪、行星齒輪軸、兩個圓錐半軸齒輪和左右差速器殼等組成。國產轎車及其它類汽車基本都采用了對稱式錐齒輪普通差速器。對稱式錐齒輪差速器由行星齒輪、半軸齒輪、行星齒輪軸(十字軸或一根直銷軸)和差速器殼等組成。1-軸承;2-左外殼;3-墊片;4-半軸齒輪;5-墊圈;6-行星齒輪;7-從動齒輪;8-右外殼;9-十字軸;10-螺栓大多數情況下,通過做四輪定位可以解決,但如果做四輪定位仍不能解決,這一定是其他原因導致。
輪式驅動橋主傳動機構調整所謂正確嚙合就是要求兩個錐齒輪的節錐母線重合,節錐頂點交于一點。常用齒側間隙和嚙合印痕不小于齒長之半,且在高度方向位于齒高的中部在齒長方向的中間稍靠近小端。**傳動有軸向力的作用,通常都采用能承受較大軸向力的滾錐軸承支承 。輪式驅動橋主傳動機構調整1、主傳動器錐齒輪嚙合印痕的調整**傳動的使用壽命與傳動效率在很大程度上決定于錐齒輪嚙合的正確性。嚙合印痕的檢驗方法是:在一個圓錐齒輪齒面上涂以紅鉛油,轉動齒輪1-2圈,在另一個圓錐齒輪的齒面上即留下了嚙合印痕。檢查嚙合印痕應以前進檔嚙合面為主,適當照顧后退檔位。正確的嚙合印痕應在齒面中部偏向小端“我的車行駛中總向右跑偏,做了幾次定位還是跑偏,應該怎樣解決?”。昆明輪挖驅動橋出廠價
變速功能、主要減慢速度的功能以及差速功能等等不同應用功能;江門品質輪挖驅動橋
驅動橋是位于傳動系末端能改變來自變速器的轉速和轉矩,并將它們傳遞給驅動輪的機構。驅動橋一般由主減速器、差速器、車輪傳動裝置和驅動橋殼等組成,轉向驅動橋還有等速萬向節。另外,驅動橋還要承受作用于路面和車架或車身之間的垂直力,縱向力和橫向力,以及制動力矩和反作用力。驅動橋處于動力傳動系的末端,其基本功能是:①將萬向傳動裝置傳來的發動機轉矩通過主減速器、差速器、半軸等傳到驅動車輪,實現降速增大轉矩;②通過主減速器圓錐齒輪副改變轉矩的傳遞方向;③通過差速器實現兩側車輪差速作用,保證內、外側車輪以不同轉速轉向;④通過橋殼體和車輪實現承載及傳力矩作用。[1]江門品質輪挖驅動橋