10.需要支持?jǐn)?shù)據(jù)降頻、插值、特殊函數(shù)計(jì)算等操作。原始數(shù)據(jù)的采集可能頻次挺高,但具體分析時(shí),往往不需要對(duì)原始收據(jù)進(jìn)行,而是數(shù)據(jù)降頻之后。系統(tǒng)需要提供高效的數(shù)據(jù)降頻操作。設(shè)備是很難同步的,不同設(shè)備采集數(shù)據(jù)的時(shí)間點(diǎn)是很難對(duì)齊的,因此分析一個(gè)特定時(shí)間點(diǎn)的值,往往需要插值才能解決,系統(tǒng)需要提供線性插值、設(shè)置固定值等多種插值策略才行。工業(yè)互聯(lián)網(wǎng)里,除通用的統(tǒng)計(jì)操作之外,往往還需要支持一些特殊函數(shù),比如時(shí)間加權(quán)平均、11.需要支持即席分析和查詢。為提高大數(shù)據(jù)分析師的工作效率,系統(tǒng)應(yīng)該提供一命令行工具或容許用戶通過(guò)其他工具,執(zhí)行SQL查詢,而不是非要通過(guò)編程接口。查詢分析的結(jié)果可以很方便的導(dǎo)出,再制作成各種圖標(biāo)。無(wú)論是訪問(wèn)新采集的數(shù)據(jù)還是十年前的老數(shù)據(jù),除輸入的時(shí)間參數(shù)不同之外,其余應(yīng)該是一樣的。常州企業(yè)物聯(lián)網(wǎng)大數(shù)據(jù)平臺(tái)怎么用
數(shù)據(jù)接入服務(wù)(DIS):數(shù)據(jù)接入服務(wù)(Data Ingestion Service)為處理或分析流數(shù)據(jù)的自定義應(yīng)用程序構(gòu)建數(shù)據(jù)流管道,主要解決云服務(wù)外的數(shù)據(jù)實(shí)時(shí)傳輸?shù)皆品?wù)內(nèi)的問(wèn)題。數(shù)據(jù)接入服務(wù)每小時(shí)可從數(shù)十萬(wàn)種數(shù)據(jù)源(如IoT數(shù)據(jù)采集、日志和定位追蹤事件、網(wǎng)站點(diǎn)擊流、社交媒體源等)中連續(xù)捕獲、傳送和存儲(chǔ)數(shù)TB數(shù)據(jù)。實(shí)時(shí)流計(jì)算服務(wù)(CS):實(shí)時(shí)流計(jì)算服務(wù)(Cloud Stream Service),是運(yùn)行在公有云上的實(shí)時(shí)流式大數(shù)據(jù)分析服務(wù),全托管的方式用戶無(wú)需感知計(jì)算集群,只需聚焦于Stream SQL業(yè)務(wù),即時(shí)執(zhí)行作業(yè)。重慶人工智能物聯(lián)網(wǎng)大數(shù)據(jù)平臺(tái)解決方案需要支持?jǐn)?shù)據(jù)降頻、插值、特殊函數(shù)計(jì)算等操作。
13.開(kāi)放的系統(tǒng)必須是開(kāi)放的。系統(tǒng)需要支持業(yè)界流行的標(biāo)準(zhǔn)SQL,提供各種語(yǔ)言開(kāi)發(fā)接口,包括C/C++,Java,Go,Python,RESTful等等,也需要支持Spark,R,Matlab等等,方便集成各種機(jī)器學(xué)習(xí)、人工智能算法或其他應(yīng)用,讓大數(shù)據(jù)處理平臺(tái)能夠不斷擴(kuò)展,而不是成為一個(gè)孤島。14.支持異構(gòu)環(huán)境系統(tǒng)必須支持異構(gòu)環(huán)境。大數(shù)據(jù)平臺(tái)的搭建是一個(gè)長(zhǎng)期的工作,每個(gè)批次采購(gòu)的服務(wù)器和存儲(chǔ)設(shè)備都會(huì)不一樣,系統(tǒng)必須支持各種檔次、各種不同配置的服務(wù)器和存儲(chǔ)設(shè)備并存。15.支持邊云協(xié)同需要支持邊云協(xié)同。要有一套靈活的機(jī)制將邊緣計(jì)算節(jié)點(diǎn)的數(shù)據(jù)上傳到云端,根據(jù)具體需要,可以將原始數(shù)據(jù),或加工計(jì)算后的數(shù)據(jù),或**符合過(guò)濾條件的數(shù)據(jù)同步到云端,而且隨時(shí)可以取消,更改策略。
而且這個(gè)訂閱也應(yīng)該是個(gè)性化的,容許應(yīng)用設(shè)置過(guò)濾條件,比如只訂閱某個(gè)物理量五分鐘的平均值。7.和歷史數(shù)據(jù)處理合二為一實(shí)時(shí)數(shù)據(jù)和歷史數(shù)據(jù)的處理要合二為一。實(shí)時(shí)數(shù)據(jù)在緩存里,歷史數(shù)據(jù)在持久化存儲(chǔ)介質(zhì)里,而且可能依據(jù)時(shí)長(zhǎng),保留在不同存儲(chǔ)介質(zhì)里。系統(tǒng)應(yīng)該隱藏背后的存儲(chǔ),給用戶和應(yīng)用呈現(xiàn)的是同一個(gè)接口和界面。無(wú)論是訪問(wèn)新采集的數(shù)據(jù)還是十年前的老數(shù)據(jù),除輸入的時(shí)間參數(shù)不同之外,其余應(yīng)該是一樣的。8.數(shù)據(jù)持續(xù)穩(wěn)定寫(xiě)入需要保證數(shù)據(jù)能持續(xù)穩(wěn)定寫(xiě)入。對(duì)于物聯(lián)網(wǎng)系統(tǒng),數(shù)據(jù)流量往往是平穩(wěn)的,因此數(shù)據(jù)寫(xiě)入所需要的資源往往是可以估算的。但是變化的是查詢、分析,特別是即席查詢,有可能耗費(fèi)很大的系統(tǒng)資源,不可控。因此系統(tǒng)必須保證分配足夠的資源以確保數(shù)據(jù)能夠?qū)懭胂到y(tǒng)而不被丟失。準(zhǔn)確的說(shuō),系統(tǒng)必須是一個(gè)寫(xiě)優(yōu)先系統(tǒng)。9.數(shù)據(jù)多維度分析需要對(duì)數(shù)據(jù)支持靈活的多維度分析。對(duì)于聯(lián)網(wǎng)設(shè)備產(chǎn)生的數(shù)據(jù),需要進(jìn)行各種維度的統(tǒng)計(jì)分析,比如從設(shè)備所處的地域進(jìn)行分析,從設(shè)備的型號(hào)、供應(yīng)商進(jìn)行分析,從設(shè)備所使用的人員進(jìn)行分析等等。而且這些維度的分析是無(wú)法事先想好的,而是在實(shí)際運(yùn)營(yíng)過(guò)程中,根據(jù)業(yè)務(wù)發(fā)展的需求定下來(lái)的。系統(tǒng)應(yīng)該提供訂閱功能,只要有新的數(shù)據(jù)更新,就應(yīng)該實(shí)時(shí)提醒應(yīng)用。
人工智能、大數(shù)據(jù)、物聯(lián)網(wǎng)以及云計(jì)算,彼此之間皆存在著千絲萬(wàn)縷的“親緣”關(guān)系??!半個(gè)多世紀(jì)的某個(gè)夏天,麥卡錫、明斯基等眾科學(xué)家們舉辦了一次Party,共同研究用機(jī)器模擬智能的問(wèn)題,也是在那時(shí),“人工智能(AI)”的理念正式被提出!人工智能(ArtificialIntelligence)簡(jiǎn)稱(chēng)AI,AI能根據(jù)大量的歷史資料和實(shí)時(shí)觀察(real-timeobservation)找出對(duì)于未來(lái)預(yù)測(cè)性的洞察(predictiveinsights)。如今人工智能商業(yè)化正在快速推進(jìn)中,比如我們所知道和了解的人像識(shí)別、圖像識(shí)別技術(shù)、語(yǔ)音識(shí)別、自然語(yǔ)言理解、用戶畫(huà)像等。此類(lèi)技術(shù)也現(xiàn)階段已經(jīng)在金融、物聯(lián)網(wǎng)等行業(yè)得到應(yīng)用!需要支持即席分析和查詢。紹興設(shè)備物聯(lián)網(wǎng)大數(shù)據(jù)平臺(tái)有哪些
這些場(chǎng)景并不需要什么實(shí)時(shí)性,批處理即可。常州企業(yè)物聯(lián)網(wǎng)大數(shù)據(jù)平臺(tái)怎么用
7.和歷史數(shù)據(jù)處理合二為一實(shí)時(shí)數(shù)據(jù)和歷史數(shù)據(jù)的處理要合二為一。實(shí)時(shí)數(shù)據(jù)在緩存里,歷史數(shù)據(jù)在持久化存儲(chǔ)介質(zhì)里,而且可能依據(jù)時(shí)長(zhǎng),保留在不同存儲(chǔ)介質(zhì)里。系統(tǒng)應(yīng)該隱藏背后的存儲(chǔ),給用戶和應(yīng)用呈現(xiàn)的是同一個(gè)接口和界面。無(wú)論是訪問(wèn)新采集的數(shù)據(jù)還是十年前的老數(shù)據(jù),除輸入的時(shí)間參數(shù)不同之外,其余應(yīng)該是一樣的。8.數(shù)據(jù)持續(xù)穩(wěn)定寫(xiě)入需要保證數(shù)據(jù)能持續(xù)穩(wěn)定寫(xiě)入。對(duì)于物聯(lián)網(wǎng)系統(tǒng),數(shù)據(jù)流量往往是平穩(wěn)的,因此數(shù)據(jù)寫(xiě)入所需要的資源往往是可以估算的。但是變化的是查詢、分析,特別是即席查詢,有可能耗費(fèi)很大的系統(tǒng)資源,不可控。因此系統(tǒng)必須保證分配足夠的資源以確保數(shù)據(jù)能夠?qū)懭胂到y(tǒng)而不被丟失。準(zhǔn)確的說(shuō),系統(tǒng)必須是一個(gè)寫(xiě)優(yōu)先系統(tǒng)。常州企業(yè)物聯(lián)網(wǎng)大數(shù)據(jù)平臺(tái)怎么用