5.需要實時流式計算。各種實時預警或預測已經不是簡單的基于某一個閾值進行,而是需要通過將一個或多個設備產生的數據流進行實時聚合計算,不只是基于一個時間點、而是基于一個時間窗口進行計算。不僅如此,計算的需求也相當復雜,因場景而異,應容許用戶自定義函數進行計算。6.需要支持數據訂閱。與通用大數據平臺比較一致,同一組數據往往有很多應用都需要,因此系統應該提供訂閱功能,只要有新的數據更新,就應該實時提醒應用。而且這個訂閱也應該是個性化的,容許應用設置過濾條件,比如只訂閱某個物理量五分鐘的平均值。7.實時數據和歷史數據的處理要合二為一。實時數據在緩存里,歷史數據在持久化存儲介質里,而且可能依據時長,保留在不同存儲介質里。系統應該隱藏背后的存儲,給用戶和應用呈現的是同一個接口和界面。無論是訪問新采集的數據還是十年前的老數據,除輸入的時間參數不同之外,其余應該是一樣的。設備是很難同步的,不同設備采集數據的時間點是很難對齊的。南京物聯網大數據平臺綜合服務
人工智能、大數據、物聯網以及云計算,彼此之間皆存在著千絲萬縷的“親緣”關系!!半個多世紀的某個夏天,麥卡錫、明斯基等眾科學家們舉辦了一次Party,共同研究用機器模擬智能的問題,也是在那時,“人工智能(AI)”的理念正式被提出!人工智能(ArtificialIntelligence)簡稱AI,AI能根據大量的歷史資料和實時觀察(real-timeobservation)找出對于未來預測性的洞察(predictiveinsights)。如今人工智能商業化正在快速推進中,比如我們所知道和了解的人像識別、圖像識別技術、語音識別、自然語言理解、用戶畫像等。此類技術也現階段已經在金融、物聯網等行業得到應用!深圳智能化物聯網大數據平臺開發為降低成本,一個節點的處理性能必須是高效的,需要支持數據的快速寫入和快速查詢。
需要支持邊云協同。要有一套靈活的機制將邊緣計算節點的數據上傳到云端,根據具體需要,可以將原始數據,或加工計算后的數據,或**符合過濾條件的數據同步到云端,而且隨時可以取消,更改策略。16.需要單一的后臺管理系統。便于查看系統運行狀態、管理集群、管理用戶、管理各種系統資源等,而且系統能夠與第三方IT運維監測平臺無縫集成,便于管理。17.便于私有化部署。因為很多企業出于安全以及各種因素的考慮,希望采用私有化部署。而傳統的企業往往沒有很強的IT運維團隊,因此在安裝、部署上需要做到簡單、快捷,可維護性強。以上總結了物聯網大數據平臺的主要功能和特點,而物聯網大數據平臺本身也在演變之中,但總的目標不會改變,那就是高效、可伸縮、實時、可靠、靈活、開放、簡單、易維護。
在物聯網時代,數量龐大的“物”會產生PB級的海量數據,傳統的數據處理服務的處理速度已無法跟上數據產生的速度。如果沒法及時分析與利用這龐大的物聯網設備數據,就無法將數據的價值比較大化,大數據分析能力的建設對物聯網企業來說又成為了一個新的挑戰。針對這種情況,大數據處理服務應運而生。服務提供商提供大數據處理平臺,為企業消除了大數據處理的效率問題和可靠性問題,讓企業能夠專注于物聯網數據的分析與利用。時序數據有些數據實時性沒那么強,但是和時間順序強相關,分析后的數據需要分類后按時序儲存,并提供按時序瀏覽、查詢數據的能力,我們稱之為時序數據。典型的時序數據包括設備移動軌跡、**價格曲線等,應用于行為分析、趨勢預測等場景,例如,基于物聯網的公路監控系統保存了近期所有車輛的行駛軌跡,警方可隨時從中提取指定嫌疑人車輛的形式的軌跡,推測出嫌疑人的目的地,從而進行包抄逮捕。時序數據的分析一般依賴于時序數據庫,數據保存至時序數據庫進行分類與排序,再由其他應用或服務從數據庫中獲取進行進一步處理。實時數據在緩存里,歷史數據在持久化存儲介質里,而且可能依據時長,保留在不同存儲介質里。
高效緩存需要高效的緩存功能。絕大部分場景,都需要能快速獲取設備當前狀態或其他信息,用以報警、大屏展示或其他。系統需要提供一高效機制,讓用戶可以獲取全部、或符合過濾條件的部分設備的***狀態。5.實時流式計算需要實時流式計算。各種實時預警或預測已經不是簡單的基于某一個閾值進行,而是需要通過將一個或多個設備產生的數據流進行實時聚合計算,不只是基于一個時間點、而是基于一個時間窗口進行計算。不僅如此,計算的需求也相當復雜,因場景而異,應容許用戶自定義函數進行計算。6.數據訂閱需要支持數據訂閱。與通用大數據平臺比較一致,同一組數據往往有很多應用都需要,因此系統應該提供訂閱功能,只要有新的數據更新,就應該實時提醒應用。而且這個訂閱也應該是個性化的,容許應用設置過濾條件,比如只訂閱某個物理量五分鐘的平均值。準確的說,系統必須是一個寫優先系統。浙江機房物聯網大數據平臺
需要保證數據能持續穩定寫入。南京物聯網大數據平臺綜合服務
趨勢二:與云計算的深度結合大數據離不開云處理,云處理為大數據提供了彈性可拓展的基礎設備,是產生大數據的平臺之一。自2013年開始,大數據技術已開始和云計算技術緊密結合,預計未來兩者關系將更為密切。除此之外,物聯網、移動互聯網等新興計算形態,也將一齊助力大數據**,讓大數據營銷發揮出更大的影響力。趨勢三:科學理論的突破隨著大數據的快速發展,就像計算機和互聯網一樣,大數據很有可能是新一輪的技術**。隨之興起的數據挖掘、機器學習和人工智能等相關技術,可能會改變數據世界里的很多算法和基礎理論,實現科學技術上的突破。趨勢四:數據科學和數據聯盟的成立未來,數據科學將成為一門專門的學科,被越來越多的人所認知。各大高校將設立專門的數據科學類專業,也會催生一批與之相關的新的就業崗位。與此同時,基于數據這個基礎平臺,也將建立起跨領域的數據共享平臺,之后,數據共享將擴展到企業層面,并且成為未來產業的**一環。南京物聯網大數據平臺綜合服務