當物體占據的空間是二維空間時,所占空間的大小叫做該物體的面積,面積可以是平面的也可以是曲面的。平方米,平方分米,平方厘米,是公認的面積單位,用字母可以表示為(m2,dm2,cm2)。面積是表示平面中二維圖形或形狀或平面層的程度的數量。表面積是三維物體的二維表面上的模擬物。面積可以理解為具有給定厚度的材料的量,面積是形成形狀的模型所必需的.
面積是表示平面中二維圖形或形狀或平面層的程度的數量。表面積是三維物體的二維表面上的模擬物。面積可以理解為具有給定厚度的材料的量,面積是形成形狀的模型所必需的,或者用單一涂層覆蓋表面所需的涂料量。它是曲線長度(一維概念)或實體體積(三維概念)的二維模擬。 中學數學演示教具模型。深圳公立 數學教學教具
常用單位換算
長度單位換算
1千米=1000米 1米=10分米 1分米=10厘米 1米=100厘米 1厘米=10毫米
面積單位換算
1平方千米=100公頃 1公頃=10000平方米 1平方米=100平方分米
1平方分米=100平方厘米 1平方厘米=100平方毫米
體(容)積單位換算
1立方米=1000立方分米 1立方分米=1000立方厘米 1立方分米=1升
1立方厘米=1毫升 1立方米=1000升
重量單位換算
1噸=1000 千克
1千克=1000克
1千克=1公斤
人民幣單位換算
1元=10角
1角=10分
1元=100分
直角三角形定律
定理:在直角三角形中,如果一個銳角等于30°那么它所對的直角邊等于斜邊的一半
判定定理:直角三角形斜邊上的中線等于斜邊上的一半
勾股定理:直角三角形兩直角邊a、b的平方和、等于斜邊c的平方,即a^2+b^2=c^2
勾股定理的逆定理:如果三角形的三邊長a、b、c有關系a^2+b^2=c^2,那么這個三角形是直角三角形
多邊內角和定律
定理:四邊形的內角和等于360°;四邊形的外角和等于360°
多邊形內角和定理:n邊形的內角和等于(n-2)×180°
推論:任意多邊的外角和等于360°
7. 拓撲學a:點集拓撲學,b:代數拓撲學,c:同倫論,d:低維拓撲學,e:同調論,f:維數論,g:格上拓撲學,h:纖維叢論,i:幾何拓撲學,j:奇點理論,k:微分拓撲學,l:拓撲學其他學科。8. 數學分析a:微分學,b:積分學,c:級數論,d:數學分析其他學科。9. 非標準分析10. 函數論a:實變函數論,b:單復變函數論,c:多復變函數論,d:函數逼近論,e:調和分析,f:復流形,g:特殊函數論,h:函數論其他學科。11. 常微分方程a:定性理論,b:穩定性理論。c:解析理論,d:常微分方程其他學科。12. 偏微分方程a:橢圓型偏微分方程,b:雙曲型偏微分方程,c:拋物型偏微分方程,d:非線性偏微分方程,e:偏微分方程其他學科。13. 動力系統a:微分動力系統,b:拓撲動力系統,c:復動力系統,d:動力系統其他學科。小學數學傾向換算模型。
比例的基本性質
如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d
合比性質
如果a/b=c/d,那么(a±b)/b=(c±d)/d
等比性質
如果a/b=c/d=…=m/n(b+d+…+n≠0),
那么(a+c+…+m)/(b+d+…+n)=a/b
相似三角形定理:平行于三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構成的三角形與原三角形相似
相似三角形判定定理:
1.兩角對應相等,兩三角形相似(ASA)
2.兩邊對應成比例且夾角相等,兩三角形相似(SAS)
直角三角形被斜邊上的**成的兩個直角三角形和原三角形相似
判定定理3:三邊對應成比例,兩三角形相似(SSS)
相似直角三角形定理:如果一個直角三角形的斜邊和一條直角邊與另一個直角三角形的斜邊和一條直角邊對應成比例,那么這兩個直角三角形相似 小學數學教學演示算盤。包頭數學教學教具清單
圓柱、圓錐的體積演示器。深圳公立 數學教學教具
算盤( abacus)是一種手動操作計算輔助工具形式。它起源于中國,迄今已有2600多年的歷史,是中國古代的一項重要發明。在阿拉伯數字出現前,算盤是世界廣為使用的計算工具。現在,算盤在亞洲和中東的部分地區繼續使用,尤其見于商店之中,可以從供應中國商品和日本商品的商店里買到。在西方,它有時被用來幫助小孩子們理解數字,而一些數學家喜歡體驗一下使用算盤計算出簡單算術問題的感覺
算盤的新形狀為長方形,周為木框,內貫直柱,俗稱“檔”。一般從九檔至十五檔,檔中橫以梁,梁上兩珠,每珠作數五,梁下五珠,每珠作數一,運算時定位后撥珠計算,可以做加減乘除等算法。現存的算盤形狀不一、材質各異。一般的算盤多為木制(或塑料制品),算盤由矩形木框內排列一串串等數日的算珠,中有一道橫梁把珠統分為上下兩部分,算珠內貫直柱,俗稱“檔”,一般為9檔、1 1檔或13檔。檔中橫以梁,梁上1珠,這珠為5;梁下5珠,每珠為1。 深圳公立 數學教學教具