泵的前后蓋和泵體由兩個定位銷17定位,用6只螺釘固緊如圖3-3。為了保證齒輪能靈活地轉動,同時又要保證泄露小,在齒輪端面和泵蓋之間應有適當間隙(軸向間隙),對小流量泵軸向間隙為,大流量泵為。齒頂和泵體內表面間的間隙(徑向間隙),由于密封帶長,同時齒頂線速度形成的剪切流動又和油液泄露方向相反,故對泄露的影響較小,這里要考慮的問題是:當齒輪受到不平衡的徑向力后,應避免齒頂和泵體內壁相碰,所以徑向間隙就可稍大,一般取。三、內嚙合齒輪泵的分類和結構特點1.按齒輪嚙合的形式可分為:外嚙合式和內嚙合式2.按齒形曲線可分為:漸開線齒形式和擺線式3.按齒面形式可分為:直齒齒輪式、斜齒齒輪式、人字齒齒輪式、圓弧...
????造成流量減小。應查明原因并加以排除。3、旋轉不暢①軸向間隙或徑向間隙太小。重新加以調整修配。②泵內有污物。解體以異物。③裝配有誤。內嚙合齒輪泵兩銷孔的加工基準面并非裝配基準面,如先將銷子打入,再擰緊螺釘,泵會轉不動。正確的方法是,邊轉動內嚙合齒輪泵邊擰緊螺釘,后配鉆銷孔并打入銷子。④泵與發動機聯軸器的同軸度差。同軸度應保證在。⑤泵內零件未退磁。裝配前所有零件均須退磁。⑥滾針套質量不合格或滾針斷裂。修理或更換。⑦工作油輸出口被堵塞。異物。4、發熱①造成內嚙合齒輪泵旋轉不暢的各項原因均能導致內嚙合齒輪泵發熱,排除方法亦可參照其執行。②油液黏度過高或過低。重新選油。③側板、軸套與齒輪端面嚴重...
軋鋼廠棒材熱送液壓站主要用于給推鋼機上鋼時提供動力,原有液壓站電控部分采用接觸器式控制系統、油泵采用變量泵,功耗高、噪音大、工作時油路沖擊明顯。近日,液壓站油泵電機的伺服系統改造已完成,目前已正式投入使用,現場運行狀況良好,伺服系統運用于液壓站的油泵控制在公司屬首例。伺服控制系統在熱送液壓站的運用,其控制原理是利用壓力閉環,根據現場檢測的實際壓力與系統給定壓力量值對比,實現控制系統的實時控制調節。與傳統電控油泵系統相比,伺服液壓控制系統的油泵電機具有體積小、效率高、低功耗、低噪音等優點,且其電控部分結構緊湊、控制方式簡單。改造前油泵電機運行電流約75A,油箱溫升高,需長期開啟冷卻系統進行冷卻,...
同時對機器精度的提高、生產效率的提高、合格率的提高等具有極大的作用,普通壓鑄機的伺服改造必將成為國內壓鑄機節能改造的主導方向。壓鑄機伺服節能改造后,系統壓力、流量雙閉環,液壓系統將按照實際需要的流量和壓力來供油,克服了普通定量泵系統高壓溢流產生的高能耗。壓鑄機節能改造后在伺服系統對油泵進行控制時,由于伺服能快速響應所給定的控制信號,并且能夠在速度控制和力矩控制之間靈活地切換以實現運動控制或壓鑄控制,所以工作周期也能有所縮短,壓鑄成品質量也有所提高;合理的供油量控制更減輕了冷卻系統的負荷和功率損耗。圖1:壓鑄機改造前的電機及油泵圖2:壓鑄機改造所使用的伺服電機及內嚙合齒輪泵近年來,隨著客戶對于壓...
????油箱中的油液在外界大氣壓的作用下,經吸一油管進入吸油腔;完成吸油過程。隨著齒輪的轉動,每個輪齒的齒間把油液從右腔帶入左腔,輪齒在左腔進入嚙合,使密封容積減小,齒間中的油液逐漸被擠出,使左腔的油壓升高,油液從排油口輸出,完成壓油過程。兩齒輪連續轉動,吸油腔就連續吸油,排油腔就連續排油。外嚙合內嚙合齒輪泵工作原理在內嚙合齒輪泵的工作過程中,只要兩齒輪的旋轉方向不變,其吸、排油腔的位置也就確定不變。這里嚙合點處的齒面接觸線一直分隔高、低壓兩腔起著配油作用,因此在內嚙合齒輪泵中不需要設置專門的配流機構,這是它與其他類型容積式液壓泵的不同之處。感謝每一位閱讀本文的朋友,你們的理解與支持是我們前進...
要計算出幾何元素的起點、終點、圓弧的圓心、兩幾何元素的交點或切點的坐標值,有的還要計算刀具中心的運動軌跡坐標值。對于形狀比較復雜的零件(如非圓曲線、曲面組成的零件),需要用直線段或圓弧段逼近,根據加工精度的要求計算出節點坐標值,這種數值計算一般要用計算機來完成。3.編寫加工程序加工路線、工藝參數及刀位數據確定后,編程人員就可以根據數控系統規定的功能指令代碼及程序段的格式,逐段編寫加工程序。如果編程人員與加工人員是分開的話,還應附上必要的加工示意圖、刀具參數表、機床調整卡、工藝卡以及相關的文字說明。4.制備控制介質把編制好的程序記錄到控制介質上,作為數控裝置的輸入信息。用人工或通信傳輸的方式送入...
????內嚙合內嚙合齒輪泵一、原理內嚙合內嚙合齒輪泵有漸開線齒形(Crescent)和擺線齒形(Grout)兩種,其結構示意可見圖。這兩種內嚙合內嚙合齒輪泵工作原理和主要特點皆同于外嚙合內嚙合齒輪泵。在漸開線齒形內嚙合內嚙合齒輪泵中,小齒輪和內齒輪之間要裝一塊月牙隔板,以便把吸油腔和壓油腔隔開;擺線齒形嚙合內嚙合齒輪泵又稱擺線轉子泵,在這種泵中,小齒輪和內齒輪只相差一個齒,因而不需設置隔板。內嚙合內嚙合齒輪泵中的小齒輪是主動輪,大齒輪為從動輪,在工作時大齒輪隨小齒輪同向旋轉,齒輪轉動,容積變化增加液體壓力。二、特點內嚙合內嚙合齒輪泵的結構緊湊,尺寸小,重量輕,運轉平穩,噪聲低,在高轉速工作時有...
內嚙合齒輪泵選型時要綜合考慮工作壓力、流量、轉速、定量或變量、變量方式、容積效率、總效率、壽命及原動機的種類、噪聲、壓力脈動率、自吸能力等,還要考慮與液壓油的相容性、尺寸、重量、經濟性、維修性等:這些因素,有些已寫在產品樣本或技術資料里,要仔細研究,不明確的地方好咨詢正規內嚙合齒輪泵生產廠家相關內嚙合齒輪泵選型手冊內容。六、內嚙合齒輪泵的困油現象和徑向力內嚙合齒輪泵的嚙合過程中,同時嚙合的齒輪對數應該多于一對,即重疊系數ε應大于1(ε=)才能正常工作。留在齒間的油液就被困在兩對同時嚙合的輪齒所形成的一個封閉空間內,這個空間的容積又將隨著齒輪的轉動而變化。這就是內嚙合齒輪泵的困油現象若整個嚙合過...
齒輪嚙合時齒向接觸線把吸油腔和壓油腔分開,起配油作用。當內嚙合齒輪泵的主動齒輪由電動機帶動不斷旋轉時,輪齒脫開嚙合的一側,由于密封容積變大則不斷從油箱中吸油,輪齒進入嚙合的一側,由于密封容積減小則不斷地排油,這就是內嚙合齒輪泵的工作原理。泵的前后蓋和泵體由兩個定位銷17定位,用6只螺釘固緊。為了保證齒輪能靈活地轉動,同時又要保證泄露小,在齒輪端面和泵蓋之間應有適當間隙(軸向間隙),對小流量泵軸向間隙為,大流量泵為。齒頂和泵體內表面間的間隙(徑向間隙),由于密封帶長,同時齒頂線速度形成的剪切流動又和油液泄露方向相反,故對泄露的影響較小,這里要考慮的問題是:當齒輪受到不平衡的徑向力后,應避...
要計算出幾何元素的起點、終點、圓弧的圓心、兩幾何元素的交點或切點的坐標值,有的還要計算刀具中心的運動軌跡坐標值。對于形狀比較復雜的零件(如非圓曲線、曲面組成的零件),需要用直線段或圓弧段逼近,根據加工精度的要求計算出節點坐標值,這種數值計算一般要用計算機來完成。3.編寫加工程序加工路線、工藝參數及刀位數據確定后,編程人員就可以根據數控系統規定的功能指令代碼及程序段的格式,逐段編寫加工程序。如果編程人員與加工人員是分開的話,還應附上必要的加工示意圖、刀具參數表、機床調整卡、工藝卡以及相關的文字說明。4.制備控制介質把編制好的程序記錄到控制介質上,作為數控裝置的輸入信息。用人工或通信傳輸的方式送入...
也可根據輸入電流信號的大小連續的控制油流的流量和壓力大小。雖然控制精度比電液伺服閥稍顯遜色,但在油液污染、加工裝配精度和使用要求等方面均更占優勢。從控制原理上講,比例閥與伺服閥基本相同,無論是閥的基本結構或主閥的動作原理,比例閥和伺服閥都十分相同或相近。先導控制部分取自伺服閥,結構相對更簡單,主閥基本采用開關式閥的操控形式,本質上略有差異,但原則上講是以開關式閥為基礎融合了比例電磁鐵的特性,屬中和型液壓控制閥。相比前兩種閥,比例控制閥的結構相對簡單,價格也較為便宜,可稱之為廉價的電液伺服元件。介于電液開關控制和電液伺服控制之間的比例控制閥,可謂是將上述兩種元件的特點加以結合,實際作用也介于其中...
具有3倍過載能力,流量響應和壓力響應性能更好;自帶的CAN總線功能可滿足大型設備多泵并聯的應用需求;特有的PQ(壓力和流量)解耦控制方案和多段PID控制技術,成型更快、更精密;單機功率范圍為,對于系統排量在320L/min以上的壓鑄機,由于受到油泵排量與響應速度的限制,可采用多泵合流的控制方案。3.威托斯液壓伺服控制方案特點(1)節能伺服液壓系統壓力、流量雙閉環,液壓系統按照實際需要的流量和壓力來供油,克服了普通定量泵系統高壓溢流產生的高能耗,在保壓、冷卻等低流量工作階段降低了電機轉速,油泵電機實際能耗降低了50%-80%。(2)響應迅速,生產效率高響應速度快,壓力和流量上升時間快至毫秒級,提...
案例的講述對于學習,研究,借鑒等具有重要意義,在液壓系統故障的診斷和處理中的意義就更顯而易見了。我們不妨把案例當作一種工具甚至是武器。案例是一種載體,一種甚至可以說是有效的知識和經驗的傳遞。案例篇將由幾個的案例組成,限于篇幅,一次講述一個。案例故障現象,設備上的內嚙合液壓泵(PGH系列)在很短的壽命周期內就不起壓了。對已損壞的泵進行拆檢,發現內嚙合齒輪泵月牙板損壞。拆檢發現:內嚙合齒輪泵月牙板損壞內嚙合內嚙合齒輪泵工作原理圖月牙板主要是分隔吸排油區間,一般來說并非易損件。發生斷裂的情況可以得出是受到極大的沖擊力而導致。幾乎可以斷定在系統運行過程中存在很大的壓力變化,極快的壓力變化引起較大的壓力...
同時對機器精度的提高、生產效率的提高、合格率的提高等具有極大的作用,普通壓鑄機的伺服改造必將成為國內壓鑄機節能改造的主導方向。壓鑄機伺服節能改造后,系統壓力、流量雙閉環,液壓系統將按照實際需要的流量和壓力來供油,克服了普通定量泵系統高壓溢流產生的高能耗。壓鑄機節能改造后在伺服系統對油泵進行控制時,由于伺服能快速響應所給定的控制信號,并且能夠在速度控制和力矩控制之間靈活地切換以實現運動控制或壓鑄控制,所以工作周期也能有所縮短,壓鑄成品質量也有所提高;合理的供油量控制更減輕了冷卻系統的負荷和功率損耗。圖1:壓鑄機改造前的電機及油泵圖2:壓鑄機改造所使用的伺服電機及內嚙合齒輪泵近年來,隨著客戶對于壓...
內嚙合內嚙合齒輪泵一、原理內嚙合內嚙合齒輪泵有漸開線齒形(Crescent)和擺線齒形(Grout)兩種,其結構示意可見圖。這兩種內嚙合內嚙合齒輪泵工作原理和主要特點皆同于外嚙合內嚙合齒輪泵。在漸開線齒形內嚙合內嚙合齒輪泵中,小齒輪和內齒輪之間要裝一塊月牙隔板,以便把吸油腔和壓油腔隔開;擺線齒形嚙合內嚙合齒輪泵又稱擺線轉子泵,在這種泵中,小齒輪和內齒輪只相差一個齒,因而不需設置隔板。內嚙合內嚙合齒輪泵中的小齒輪是主動輪,大齒輪為從動輪,在工作時大齒輪隨小齒輪同向旋轉,齒輪轉動,容積變化增加液體壓力。二、特點內嚙合內嚙合齒輪泵的結構緊湊,尺寸小,重量輕,運轉平穩,噪聲低,在高轉速工作時有...
要計算出幾何元素的起點、終點、圓弧的圓心、兩幾何元素的交點或切點的坐標值,有的還要計算刀具中心的運動軌跡坐標值。對于形狀比較復雜的零件(如非圓曲線、曲面組成的零件),需要用直線段或圓弧段逼近,根據加工精度的要求計算出節點坐標值,這種數值計算一般要用計算機來完成。3.編寫加工程序加工路線、工藝參數及刀位數據確定后,編程人員就可以根據數控系統規定的功能指令代碼及程序段的格式,逐段編寫加工程序。如果編程人員與加工人員是分開的話,還應附上必要的加工示意圖、刀具參數表、機床調整卡、工藝卡以及相關的文字說明。4.制備控制介質把編制好的程序記錄到控制介質上,作為數控裝置的輸入信息。用人工或通信傳輸的方式送入...
造成齒頂和泵體內壁的摩擦等。為了解決徑向力不平衡問題,在有些內嚙合齒輪泵上,采用開壓力平衡槽的辦法來消除徑向不平衡力,但這將使泄漏增大,容積效率降低等。CB—B型內嚙合齒輪泵則采用縮小壓油腔,以減少液壓力對齒頂部分的作用面積來減小徑向不平衡力,所以泵的壓油口孔徑比吸油口孔徑要小。內嚙合齒輪泵的流量計算內嚙合齒輪泵的排量V相當于一對齒輪所有齒谷容積之和,假如齒谷容積大致等于輪齒的體積,那么內嚙合齒輪泵的排量等于一個齒輪的齒谷容積和輪齒容積體積的總和,即相當于以有效齒高(h=2m)和齒寬構成的平面所掃過的環形體積,即:(3-10)式中:D為齒輪分度圓直徑,D=mz(cm);h為有效齒高,h...
軋鋼廠棒材熱送液壓站主要用于給推鋼機上鋼時提供動力,原有液壓站電控部分采用接觸器式控制系統、油泵采用變量泵,功耗高、噪音大、工作時油路沖擊明顯。近日,液壓站油泵電機的伺服系統改造已完成,目前已正式投入使用,現場運行狀況良好,伺服系統運用于液壓站的油泵控制在公司屬首例。伺服控制系統在熱送液壓站的運用,其控制原理是利用壓力閉環,根據現場檢測的實際壓力與系統給定壓力量值對比,實現控制系統的實時控制調節。與傳統電控油泵系統相比,伺服液壓控制系統的油泵電機具有體積小、效率高、低功耗、低噪音等優點,且其電控部分結構緊湊、控制方式簡單。改造前油泵電機運行電流約75A,油箱溫升高,需長期開啟冷卻系統進行冷卻,...
在CB—B型內嚙合齒輪泵的泵蓋上銑出兩個困油卸荷凹槽,其幾何關系。卸荷槽的位置應該使困油腔由大變小時,能通過卸荷槽與壓油腔相通,而當困油腔由小變大時,能通過另一卸荷槽與吸油腔相通。兩卸荷槽之間的距離為a,必須保證在任何時候都不能使壓油腔和吸油腔互通。按上述對稱開的卸荷槽,當困油封閉腔由大變至小時由于油液不易從即將關閉的縫隙中擠出,故封閉油壓仍將高于壓油腔壓力;齒輪繼續轉動,當封閉腔和吸油腔相通的瞬間,高壓油又突然和吸油腔的低壓油相接觸,會引起沖擊和噪聲。于是CB—B型內嚙合齒輪泵將卸荷槽的位置整個向吸油腔側平移了一個距離。這時封閉腔只有在由小變至大時才和壓油腔斷開,油壓沒有突變,封閉腔...
根據該型號性能表或性能曲線進行校改,看正常工作點是否落在該內嚙合齒輪泵優先工作區。6、對于輸送粘度大于20mm2/s的液體內嚙合齒輪泵(或密度大于1000kg/m3),一定要把以水實驗內嚙合齒輪泵特性曲線換算成該粘度(或者該密度下)的性能曲線,特別要對吸入性能和輸入功率進行認真計算或較核。7、確定內嚙合齒輪泵的臺數和備用率:對正常運轉的內嚙合齒輪泵,一般只用一臺,因為一臺大內嚙合齒輪泵與并聯工作的兩臺小內嚙合齒輪泵相當,(指揚程、流量相同),大內嚙合齒輪泵效率高于小內嚙合齒輪泵,故從節能角度講寧可選一臺大內嚙合齒輪泵,而不用兩臺小內嚙合齒輪泵,但遇有下列情況時,可考慮兩臺內嚙合齒輪泵并聯合作:...
更換內、外轉子。6、進油管端面與油槽底面接觸導致進油不暢。保證進油管端面與油槽底面有一定的距離,使進油順暢。7、從泵的吸人口處吸人空氣。確保泵吸人通道各連接件緊密連接不得漏氣,且吸入口浸沒在一定深度的油液中。8、油箱中油面過低。保證油箱中油面至一定高度。液壓內嚙合齒輪泵三、壓力升不高。1、從泵的吸人口處吸人空氣。確保泵吸入通道各連接件緊密連接不得漏氣,且吸入口浸沒在一定深度的油液中。2、內轉子轉速太低。檢查主軸到內轉子動力傳遞連接是否有松動或滑移。3、吸油口部分堵塞。檢查吸油口面積是否足夠有效。4、蝸輪、蝸桿或齒輪嚙合狀態不好,時好時差,導致內轉子速度時高時低。檢查內嚙合齒輪泵驅動系統蝸桿、蝸...
它早出現于二戰時期,目的在于滿足液壓系統向高速、高精度、大功率、高度自動化方向發展的需求,武器成為該技術的早受益對象。隨著時間的推移,在響應速度要求快、控制精度要求高的液壓伺服系統中,使用伺服閥作為控制閥,是基于該閥具有輸出效率高、反應速度快和可電氣操縱、控制性良好等優勢,由此其被廣泛應用于要求控制準確、迅速和程序控制能靈活變動的特定場合。電液伺服閥是一種理想的電子→液壓接口,可便捷高效的實現電信號→機械位移量→液壓信號的切換,并經放大輸出與電控信號“連續成比例”的液壓功率。與通斷式開關閥相比,這類閥的成本較高,對液壓系統有嚴格的污染控制要求以及閉環系統的反饋要求,這都使得電氣控制變得更為復雜...
造成流量減小。應查明原因并加以排除。3、旋轉不暢①軸向間隙或徑向間隙太小。重新加以調整修配。②泵內有污物。解體以異物。③裝配有誤。內嚙合齒輪泵兩銷孔的加工基準面并非裝配基準面,如先將銷子打入,再擰緊螺釘,泵會轉不動。正確的方法是,邊轉動內嚙合齒輪泵邊擰緊螺釘,后配鉆銷孔并打入銷子。④泵與發動機聯軸器的同軸度差。同軸度應保證在。⑤泵內零件未退磁。裝配前所有零件均須退磁。⑥滾針套質量不合格或滾針斷裂。修理或更換。⑦工作油輸出口被堵塞。異物。4、發熱①造成內嚙合齒輪泵旋轉不暢的各項原因均能導致內嚙合齒輪泵發熱,排除方法亦可參照其執行。②油液黏度過高或過低。重新選油。③側板、軸套與齒輪端面嚴重...
內嚙合內嚙合齒輪泵一、原理內嚙合內嚙合齒輪泵有漸開線齒形(Crescent)和擺線齒形(Grout)兩種,其結構示意可見圖。這兩種內嚙合內嚙合齒輪泵工作原理和主要特點皆同于外嚙合內嚙合齒輪泵。在漸開線齒形內嚙合內嚙合齒輪泵中,小齒輪和內齒輪之間要裝一塊月牙隔板,以便把吸油腔和壓油腔隔開;擺線齒形嚙合內嚙合齒輪泵又稱擺線轉子泵,在這種泵中,小齒輪和內齒輪只相差一個齒,因而不需設置隔板。內嚙合內嚙合齒輪泵中的小齒輪是主動輪,大齒輪為從動輪,在工作時大齒輪隨小齒輪同向旋轉,齒輪轉動,容積變化增加液體壓力。二、特點內嚙合內嚙合齒輪泵的結構緊湊,尺寸小,重量輕,運轉平穩,噪聲低,在高轉速工作時有...
具有3倍過載能力,流量響應和壓力響應性能更好;自帶的CAN總線功能可滿足大型設備多泵并聯的應用需求;特有的PQ(壓力和流量)解耦控制方案和多段PID控制技術,成型更快、更精密;單機功率范圍為,對于系統排量在320L/min以上的壓鑄機,由于受到油泵排量與響應速度的限制,可采用多泵合流的控制方案。3.威托斯液壓伺服控制方案特點(1)節能伺服液壓系統壓力、流量雙閉環,液壓系統按照實際需要的流量和壓力來供油,克服了普通定量泵系統高壓溢流產生的高能耗,在保壓、冷卻等低流量工作階段降低了電機轉速,油泵電機實際能耗降低了50%-80%。(2)響應迅速,生產效率高響應速度快,壓力和流量上升時間快至毫秒級,提...
維修,須檢查電源線:內接線,插頭,開關是否良好,絕緣電阻是否正常,刷尾座是事松動,換向器與電刷接觸良好,電樞繞級擴定子繞組是否是有適中斷路現象,軸承及轉動零件是否的損壞等等。4、齒輪油泵注意絕緣電阻,長期擱置不用的或在潮濕環境中使用的電動抽液泵,使用前必須用500伏兆歐表測量繞組的絕緣電阻。如繞組與電機殼間絕緣電阻小于7兆歐時,必須對繞組進行干燥處理。5、保存好每零件和調換相同零件,在拆檢齒輪油泵時,應保存好每個零件,要特別注意隔爆零件的隔爆面不能使其損傷拉毛包括絕緣襯墊及套管,如有損壞,必須調換上新的相同零件,不得采用低于原材料性能的代用材料或原有規格不符的零件,裝配時應將所有零件按原先位置...
但決不允許干吸起動前摩擦部件的表面一定要存有油液,否則短時間的高速回轉也會造成嚴重摩擦。3、機械軸封屬于較精密的部件,拆裝時要防止損傷密封元件。4、不宜在超出額定壓力的情況下工作否則會使原動機過載,加大軸承負荷,并使工作部件變形,磨損和漏泄增加,嚴重時甚至造成卡阻。5、要防止吸口真空度大于允許吸上真空度,否則不能正常吸入。6、工作中應保持油溫和粘度合適工作油溫范圍為-20~80℃。粘度太小則漏泄增加。還容易產生氣穴現象;粘度過大同樣也會使容積效率降低和吸入不正常。7、工作中要防止吸入空氣吸入空氣不但會使流量減少,而且是產生噪音的主要原因。8、端面間隙對內嚙合齒輪泵的自吸能力和容積效率影響甚大。...
它早出現于二戰時期,目的在于滿足液壓系統向高速、高精度、大功率、高度自動化方向發展的需求,武器成為該技術的早受益對象。隨著時間的推移,在響應速度要求快、控制精度要求高的液壓伺服系統中,使用伺服閥作為控制閥,是基于該閥具有輸出效率高、反應速度快和可電氣操縱、控制性良好等優勢,由此其被廣泛應用于要求控制準確、迅速和程序控制能靈活變動的特定場合。電液伺服閥是一種理想的電子→液壓接口,可便捷高效的實現電信號→機械位移量→液壓信號的切換,并經放大輸出與電控信號“連續成比例”的液壓功率。與通斷式開關閥相比,這類閥的成本較高,對液壓系統有嚴格的污染控制要求以及閉環系統的反饋要求,這都使得電氣控制變得更為復雜...
內嚙合齒輪泵的結構1-軸承外環2-堵頭3-滾子4-后泵蓋5-鍵6-齒輪7-泵體8-前泵蓋9-螺釘10-壓環11-密封環12-主動軸13-鍵14-瀉油孔15-從動軸16-瀉油槽17-定位銷內嚙合齒輪泵存在的問題1、內嚙合齒輪泵的困油問題內嚙合齒輪泵要能連續地供油,就要求齒輪嚙合的重疊系數ε大于1,也就是當一對齒輪尚未脫開嚙合時,另一對齒輪已進入嚙合,這樣,就出現同時有兩對齒輪嚙合的瞬間,在兩對齒輪的齒向嚙合線之間形成了一個封閉容積,一部分油液也就被困在這一封閉容積中〔見圖3-5(a)〕,齒輪連續旋轉時,這一封閉容積便逐漸減小,到兩嚙合點處于節點兩側的對稱位置時,封閉容積為小,齒輪再繼續轉...