主動均衡技術主動均衡又稱非能量耗散式均衡,其原理在充電和放電循環期間,是將能量高的電芯內的能量轉移到能量低的電芯中去,使得電池PACK內的電荷得到重新分配,從而縮短充電時間,延長放電使用時間。在適用場景上,主動均衡更加適用于大容量、高串數的鋰電池組應用。BMS被動均衡技術先于主動均衡在電動市場中應用,技術也較為成熟些。主動均衡則較為復雜,變壓器方案的設計以及開關矩陣的設計無疑會使成本增加明顯。但主動均衡相比采用能量傳遞分配的原則,因而能量利用率相比被動均衡更高。在實際應用中,主動均衡技術也被普遍認為更為高效和合理。例如,科列自主研發的雙向DC-DC主動均衡芯片,它采用了先進的智能算...
電池保護板的自身參數,比如自耗電分為工作自耗電和靜態(睡眠)自耗電,保護板自耗電的電流一般是ua級別。工作自耗電電流較大,主要為保護芯片、mos驅動等消耗。保護板的自耗電太大會過多消耗電池電量,如果長時間擱置的電池,保護板自耗電可能導致電池虧電。自耗電和內阻等,他們不起保護作用,但是對電池的性能是有影響的。保護板的主回路內阻也是一個很重要的參數,保護板的主回路內阻主要來源于pcb板上鋪設阻值,mos的阻值(主要)和分流電阻的阻值。在保護板進行充放電時,特別是mos部分,會產生大量的熱,因此一般保護板的mos上都需要貼一大塊的鋁片用于導熱和散熱。除了這些基本功能以外,為了使用不同的應...
BMS保護板的SOX算法估算方法。SOX包括SOC、SOE和SOP。SOC估計方法傳統方法:安時積分法、開路電壓法基于電池模型的方法:卡爾曼濾波法、粒子濾波算法神經網絡算法:神經網絡算法。SOP算法:根據電池的SOC和溫度,查表確定持續充放電最大功率瞬時充放電最大功率。電芯的去極化速度,決定當前最大功率使用的頻率。當SEI膜表面的Li離子堆積速度大于負極的吸收速度時候,就會發生電壓下降,最大功率無法維持。因此,SOP的計算難點是峰值功率與持續功率如何過度?SOH算法:兩點法計算SOH根據OCV-SOC曲線確定兩個準確的SOC值,并安時累積計算這兩個SOC之間的累積充入或放出電量,然后計算出電池...
家用儲能系統通常由電池組,電池管理系統(BMS),儲能變流器(PCS)和能量管理系統(EMS)構成,其中儲能電池和變流器是價值量較高的關鍵環節,節省電費是家庭用戶配置儲能的重要動力。太陽能光伏在白天發電,但家庭用戶的用電高峰在夜間,發電和用電時間不匹配,配置儲能可以幫助用戶將白天多發的電儲存起來,供夜間使用;另一方面,用戶在一天中不同時間用電電價不同、存在峰谷價的情況下,儲能系統可以在低谷時段通過電網或自用光伏電池板充電,高峰時段放電供負載使用,從而避免在高峰時段從電網用電,有效節省電費。BMS的功能模塊 BMS是連接車載動力電池和電動汽車的重要紐帶。什么是BMS電池管理系統 被動均...
充電管理芯片根據工作模式可分為開關模式、線性模式和開關電容模式。開關模式效率高,適用于大電流應用,且應用較靈活,可根據需要設計為降壓、升壓或升降壓架構,常用的快充方案通常都是開關模式。線性模式適用于小功率便攜電子產品,對充電電流、效率要求不高,通常不高于1A, 但對體積、成本則有較高要求。開關電容模式可以做到高達97%以上的效率,但由于架構的原因,其輸出電壓與輸入電壓通常成一個固定的比例關系,實際應用中通常與開關型充電管理芯片配合使用。BMS系統保護板能實現電池的平衡管理,確保多節電池電動車的每節電池在充放電過程中的壓差不大。高科技BMS價錢 鋰電池BMS保護板的過充保護:場效應管Q1、...
什么是電池荷電狀態(SOC)?電池荷電狀態(SOC)是電池管理的一個重要指標,尤其是對鋰離子電池而言。它指的是電池相對于其容量的電量水平,通常用百分比表示。SOC用于確定電池的剩余電量,而剩余電量對于預測電池的性能和使用壽命至關重要。測量電池的充電狀態并不是一項簡單的任務,有很多種方法,比如電壓/電流積分、阻抗測量和庫侖計數等。確定電動汽車電池SOC的技術各不相同,主要有開路電壓法,庫侖計數法,基于模型的方法幾種。 通過溫度傳感器實時監測電池的溫度,當溫度過高或過低時,BMS系統保護板會采取相應的措施。電單車BMS云平臺開發隨著城市生活節奏的加快,電動自行車以其便捷高效成為了許多人...
充電管理芯片根據工作模式可分為開關模式、線性模式和開關電容模式。開關模式效率高,適用于大電流應用,且應用較靈活,可根據需要設計為降壓、升壓或升降壓架構,常用的快充方案通常都是開關模式。線性模式適用于小功率便攜電子產品,對充電電流、效率要求不高,通常不高于1A, 但對體積、成本則有較高要求。開關電容模式可以做到高達97%以上的效率,但由于架構的原因,其輸出電壓與輸入電壓通常成一個固定的比例關系,實際應用中通常與開關型充電管理芯片配合使用。電池管理系統BMS是電動車的關鍵要素。電池組BMS電池管理系統方案定制BMS電池保護板也可以按照電芯材料來區分。不同的電芯材料,放電截止電壓和充電截止電壓是不一...
電瓶車什么電池好不會起爆?目前市面上常見的電動車電池主要有兩種:鋰電池和鉛酸電池。1.鋰電池:鋰電池具有能量密度高、循環壽命長、無記憶效應等優點,是目前電動車的主流電池類型。但是,鋰電池也存在一定的安全隱患,比如過熱、短路等情況可能導致電池燃燒或起爆。因此,選擇質量可靠的鋰電池品牌以及定期進行電池維護是非常重要的。2.鉛酸電池:鉛酸電池的優點是價格便宜、技術成熟、安全性相對較高。但缺點是重量大、體積大、能量密度低、循環壽命短。雖然鉛酸電池的安全性較高,但在選擇時仍需要關注其品質,避免使用劣質產品。總的來說,無論是哪種類型的電池,都需要注意電池的質量和維護工作,以降低電池起爆的風險。BMS系統保...
隨著移動互聯網的發展,用戶對于實時數據監控和便捷管理的需求越來越強烈。通過移動端小程序,用戶可以輕松實現“手持一站式”儲能電運維管理。這種實時的數據訪問和操作能力,極大地提升了運維效率,降低了運維成本。此外,這也體現了數字化和智能化的趨勢,使得用戶能夠隨時隨地獲取電站信息,從而做出及時有效的經營決策。總體來看,這三大變革共同指向一個方向:儲能BMS正在從單純的電池管理系統向更加綜合、智能的數據服務和能源管理平臺轉變。這樣的發展趨勢不僅提高了儲能系統的整體效能,也為用戶帶來了更加便捷的使用體驗,預示著儲能行業的未來將更加側重于數據驅動和智能管理。 對于電池管理系統(BMS)而言,除了...
遠程監控系統通過BMS電池管理系統實時采集電池組電池信息并實時地將采集的電池信息發送到Server服務器端,用戶可以通過主控制終端和移動客戶端實時地獲知電池組的電池信息,實現對BMS電池管理系統的實時的遠程監控,無需現場進行檢測操作,減少了大量人員監管的投入,減輕了電池組的維護難度,充分節省了人力資源、時間與生產成本。而且,控制模組采用分離元件搭建,可以有效地控制電池組與電氣設備回路的通斷狀態,能夠充分提高產品性能與效率,并減少產品的體積與生產成本。電池管理系統(BMS)的主要職責包括監控、保護和優化電池性能。戶外電源BMS供應商 主動均衡則是通過電量轉移的方式來實現均衡,這種方式效...
BMS保護板的SOX算法估算方法。SOX包括SOC、SOE和SOP。SOC估計方法傳統方法:安時積分法、開路電壓法基于電池模型的方法:卡爾曼濾波法、粒子濾波算法神經網絡算法:神經網絡算法。SOP算法:根據電池的SOC和溫度,查表確定持續充放電最大功率瞬時充放電最大功率。電芯的去極化速度,決定當前最大功率使用的頻率。當SEI膜表面的Li離子堆積速度大于負極的吸收速度時候,就會發生電壓下降,最大功率無法維持。因此,SOP的計算難點是峰值功率與持續功率如何過度?SOH算法:兩點法計算SOH根據OCV-SOC曲線確定兩個準確的SOC值,并安時累積計算這兩個SOC之間的累積充入或放出電量,然后計算出電池...
BMS保護板的SOX算法估算方法。SOX包括SOC、SOE和SOP。SOC估計方法傳統方法:安時積分法、開路電壓法基于電池模型的方法:卡爾曼濾波法、粒子濾波算法神經網絡算法:神經網絡算法。SOP算法:根據電池的SOC和溫度,查表確定持續充放電最大功率瞬時充放電最大功率。電芯的去極化速度,決定當前最大功率使用的頻率。當SEI膜表面的Li離子堆積速度大于負極的吸收速度時候,就會發生電壓下降,最大功率無法維持。因此,SOP的計算難點是峰值功率與持續功率如何過度?SOH算法:兩點法計算SOH根據OCV-SOC曲線確定兩個準確的SOC值,并安時累積計算這兩個SOC之間的累積充入或放出電量,然后計算出電池...
鋰電池過充過放的本質:充電時,鋰離子從正極板脫嵌,通過電解液嵌入到負極板上;放電時,鋰離子從負極板上脫嵌,并經由電解液嵌入到正極板上;鋰離子電池的充放電過程是鋰離子在極板上的嵌入和脫嵌過程。充電時,隨著鋰離子的脫嵌,正極材料體積會發生一定量的收縮;放電時,隨著鋰離子的嵌入,正極材料體積會發生一定量的膨脹。過充時,正極晶格會產生崩塌,鋰離子在負極會形成鋰枝晶從而刺破隔膜,造成電池的損壞。過放時,正極材料活性變差,阻止鋰離子的嵌入,電池容量急劇下降。如果發生正極材料體積過度膨脹,也會破壞電池的物理結構,造成電池的損壞。電池包一般是由電池模組、熱管理系統、電池管理系統(BMS)、電氣系統及結構件組成...
BMS分為純硬件BMS保護板和軟件結合硬件的BMS保護板純硬件的BMS保護板是一組比較固定的保護參數,根據自身采集到的電壓、電流、溫度等狀態保護與恢復,不需要MCU參與,這樣的保護板也就不具備通訊信息交互的功能而軟件+硬件的方式,MCU可以對信息的實時采集并且通過can、485等通訊方式與外部交互,上傳BMS保護板實時信息。一般為了更好地分析電池過去的狀態,尤其是在故障分析和算法建模的時候,需要大量的數據支撐,這時候就需要log存儲功能,盡可能多的記錄BMS的數據。 儲能BMS均衡技術主要是指電池管理系統BMS中用于維護電池組中各個單體電池電量一致性的技術。光伏BMS保護方案 ...
鋰電池的存放過程中存在一定的風險,需要我們重視并采取有效的安全管理措施。首先,鋰電池的化學性質決定了它在受到外部損傷或過度充電時可能發生燃燒起爆。因此,存放鋰電池的環境應該保持通風良好,遠離火源和高溫場所,避免在潮濕環境中存放。其次,對于長時間不使用的電池,應該采取適當措施進行儲存,例如保持適當的電荷狀態,并定期檢查電池的狀態。在鋰電池的充電過程中也存在一定的風險。使用不合格的充電設備或混用充電器可能導致電池過熱或充電不均衡,增加了電池發生事故的可能性。因此,建議使用原廠配套的充電設備,并遵循廠家的充電建議,避免過度充電或過度放電。除了個體用戶應該注意安全管理外,對于大規模使用鋰電...
BMS保護板的SOX算法估算方法。SOX包括SOC、SOE和SOP。SOC估計方法傳統方法:安時積分法、開路電壓法基于電池模型的方法:卡爾曼濾波法、粒子濾波算法神經網絡算法:神經網絡算法。SOP算法:根據電池的SOC和溫度,查表確定持續充放電最大功率瞬時充放電最大功率。電芯的去極化速度,決定當前最大功率使用的頻率。當SEI膜表面的Li離子堆積速度大于負極的吸收速度時候,就會發生電壓下降,最大功率無法維持。因此,SOP的計算難點是峰值功率與持續功率如何過度?SOH算法:兩點法計算SOH根據OCV-SOC曲線確定兩個準確的SOC值,并安時累積計算這兩個SOC之間的累積充入或放出電量,然后計算出電池...
SOC的重要性是防止電池損壞:通過將SOC保持在20%至80%之間,電動汽車BMS可防止電池過度磨損,延長SOH、容量和運行壽命。BMS還依靠準確的SOC讀數來降低電池單元因完全充電和深度放電而受損的風險。性能優化:電動汽車電池在特定的SOC范圍內運行時可實現較好性能。盡管根據電池化學成分和設計的不同,這些范圍也會有所不同,但大多數電動汽車電池都能在20%至80%SOC范圍內實現高效的電力傳輸和強勁的加速性能。估算行駛里程:SOC直接影響電動汽車的行駛里程,這對有效和安全的行程規劃至關重要。優化能效:精確的SOC測量可較大限度地減少能源浪費,同時較大限度地利用再生制動延長行駛里程。...
電池保護板,顧名思義鋰電池保護板主要是針對可充電(一般指鋰電池)起保護作用的集成電路板。鋰電池(可充型)之所以需要保護,是由它本身特性決定的。由于鋰電池本身的材料決定了它不能被過充、過放、過流、短路及超高溫充放電,因此鋰電池鋰電組件總會跟著一塊帶采樣電阻的保護板和一片電流保險器出現。電池包保護板設計中需要考慮的因素較多,如電壓平臺問題,鋰動力電池包在使用中往往被要求很大的平臺電壓,所以設計鋰動力電池包保護板時盡量使保護板不影響電芯的放電電壓,這樣對控制IC、采樣電阻等元件的要求就會很高,電流采樣電阻應滿足高精密度,低溫度系數,無感等要求。鋰電池保護板的主要功能有過充保護、過放保護、...
相比System-side電量計,Pack-side電量計芯片直接采樣電芯電壓,電壓更準確,有利于提高電量計量、充電以及保護精度;Pack-side采用可集成加密認證算法的電量計,綜合成本更低;Pack-side電池保護板PCM電壓、電流、溫度校準更容易,項目開發周期更短;Pack-side電量計面對可插拔電池時RAM數據不丟失,數據更準確。電池計量芯片屬數模混合信號芯片,涉及計量算法、AFE/ADC及計算電路等,關鍵技術體現在計量精度、管理電池串數、平臺電壓、功耗水平等。其中AFE自帶ADC,可以進行模數轉換,但需要配合嵌入式微控制器(MCU)才能實現電量計功能。 BMS系統保護...
EMS(能量管理系統,EnergyManagementSystem)是整個系統中重要的關鍵部件,EMS承接BMS反饋的相關電池信息,進行及時的分析和判斷,將分析的控制信息反饋至BMS,對系統的策略進行控制,EMS的控制策略對電池系統的衰減速率和循環壽命起到重要的作用,系統的循環壽命越長,所帶來的經濟收益自然也就越大,同時會BMS反饋回來的電池異常信息及時判斷和控制,及時切斷和控制異常電池,保護整個儲能系統,對整個儲能系統的安全性起到關鍵作用。PCS(儲能變流器,PowerControlSystem)又稱雙向儲能逆變器,可控制蓄電池的充電和放電過程,進行交直流的變換,在無電網情況下可以直接為交流...
BMS保護板分為分口與同口保護板。保護板為了現實保護電池的功能,必須要能夠主動切斷電池主回路。因此,在電池包內部,電池的主回路是要經過保護板的。為了對充電和放電都能進行控制,保護板必須具有兩個開關,分別控制充電和放電回路(姑且這么理解)。在同口保護板中,這兩個開關串在一條線上,接到電池包外部,充電和放電都經過此線。而在分口保護板中,電池分出兩根線,分別接充電開關和放電開關,再接到電池外部。之所以會出現同口和分口保護板,是為了降低成本:一般電動車鋰電池包的充電電流要比放電電流小,如果兩個開關串到一條線上,那么兩個開關就得照著大的買。而分口的話,充電電流小,就可以用一個更小的開關。這里說的開關,其...
BMS管理哪些東西?與BMS相關的幾大塊,電壓、電流、溫度、均衡,信息等,BMS保護板通過采集電壓、電流、溫度等信息,評估BMS當前狀態。BMS首先對電池包進行信息采集,包括電壓,電流,溫度三個維度的信息提取。其次,BMS對電池包的SOX算法進行估算。然后BMS會對電池包進行安全診斷,包括過流,過壓,欠壓,高溫,低溫,斷路的保護。再次是對電池包的能量進行管理,一般分為被動管理和主動管理兩種類型。還會對電池包進行信息的管理,包含數據的整車交互以及日志的存儲。BMS保護板也可以按照串數和持續放電電流大小來分。光伏BMS研發 電池管理系統(BMS)對電池SOH的管理。什么是SOH?SOH(...
主動均衡則是通過電量轉移的方式來實現均衡,這種方式效率更高、損失更小。不同廠家可能采用不同的方法,均衡電流也可能有所不同,范圍通常在1~10A之間。被動均衡更適合于小容量、低串數的鋰電池組應用,而主動均衡則更適用于高串數、大容量的動力型鋰電池組應用。對于電池管理系統(BMS)而言,除了均衡功能外,均衡策略的制定同樣至關重要。主動均衡機制采用電量轉移的方式,將組內電池的總電量轉移給容量較小的電池。電感式主動均衡以物理轉換為基礎,集成了電源開關和微型電感,實現雙向均衡。它可以通過相鄰電池間的電荷轉移來均衡電池,無論是放電、充電還是靜置狀態,都可以進行均衡,且均衡效率高達92%。 BMS...
BMS系統保護板的優勢:提高電池壽命:通過實時監測和保護電池,避免電池過充、過放等問題,BMS系統保護板能夠有效延長電池的使用壽命。增強安全性:BMS系統保護板在預防過充、過放、短路等問題方面發揮著重要作用,有效降低了電池損壞甚至起火的風險,保障了用戶的人身和財產安全。優化性能:通過平衡管理,BMS系統保護板能夠確保電池組內各節電池的壓差不大,從而提高整個電池組的充放電性能,使電動車的動力輸出更加穩定和高效。 BMS+EMS一體化集控單元的出現,揭示了儲能管理系統從單純的關注電池管理擴展到了整個能源系統的管理。太陽能BMSIC 造成鋰電池活性物質不可逆消耗的主要因素有:1...
EMS(能量管理系統,EnergyManagementSystem)是整個系統中重要的關鍵部件,EMS承接BMS反饋的相關電池信息,進行及時的分析和判斷,將分析的控制信息反饋至BMS,對系統的策略進行控制,EMS的控制策略對電池系統的衰減速率和循環壽命起到重要的作用,系統的循環壽命越長,所帶來的經濟收益自然也就越大,同時會BMS反饋回來的電池異常信息及時判斷和控制,及時切斷和控制異常電池,保護整個儲能系統,對整個儲能系統的安全性起到關鍵作用。PCS(儲能變流器,PowerControlSystem)又稱雙向儲能逆變器,可控制蓄電池的充電和放電過程,進行交直流的變換,在無電網情況下可以直接為交流...
相比System-side電量計,Pack-side電量計芯片直接采樣電芯電壓,電壓更準確,有利于提高電量計量、充電以及保護精度;Pack-side采用可集成加密認證算法的電量計,綜合成本更低;Pack-side電池保護板PCM電壓、電流、溫度校準更容易,項目開發周期更短;Pack-side電量計面對可插拔電池時RAM數據不丟失,數據更準確。電池計量芯片屬數模混合信號芯片,涉及計量算法、AFE/ADC及計算電路等,關鍵技術體現在計量精度、管理電池串數、平臺電壓、功耗水平等。其中AFE自帶ADC,可以進行模數轉換,但需要配合嵌入式微控制器(MCU)才能實現電量計功能。 通過實時監測和...
在儲能系統中,BMS(電池管理系統,BatteryManagementSystem)對電池的基本參數進行測量,包括電壓、電流、溫度等,同時根據系統中的控制策略,控制電池的電壓及電流,同時根據電池的溫度做出不同的策略調整,防止電池出現過充電和過放電,延長電池的使用壽命。除了監控電池的基本信息以外,BMS還需要根據采集到電池的相關信息,根據系統的算法,計算分析電池的SOC(電池剩余容量)和SOH(電池健康狀態),評估當前系統的剩余電量、使用壽命以及剩余使用壽命預測,對存在異常的電池及時管理(切斷、限流等)并上報至系統,保證電池的安全性及可靠性;在工商業儲能領域,BMS不僅可以確保設備的...
在儲能系統中,BMS(電池管理系統,BatteryManagementSystem)對電池的基本參數進行測量,包括電壓、電流、溫度等,同時根據系統中的控制策略,控制電池的電壓及電流,同時根據電池的溫度做出不同的策略調整,防止電池出現過充電和過放電,延長電池的使用壽命。除了監控電池的基本信息以外,BMS還需要根據采集到電池的相關信息,根據系統的算法,計算分析電池的SOC(電池剩余容量)和SOH(電池健康狀態),評估當前系統的剩余電量、使用壽命以及剩余使用壽命預測,對存在異常的電池及時管理(切斷、限流等)并上報至系統,保證電池的安全性及可靠性;在工商業儲能領域,BMS不僅可以確保設備的...
鋰電池過充過放的本質:充電時,鋰離子從正極板脫嵌,通過電解液嵌入到負極板上;放電時,鋰離子從負極板上脫嵌,并經由電解液嵌入到正極板上;鋰離子電池的充放電過程是鋰離子在極板上的嵌入和脫嵌過程。充電時,隨著鋰離子的脫嵌,正極材料體積會發生一定量的收縮;放電時,隨著鋰離子的嵌入,正極材料體積會發生一定量的膨脹。過充時,正極晶格會產生崩塌,鋰離子在負極會形成鋰枝晶從而刺破隔膜,造成電池的損壞。過放時,正極材料活性變差,阻止鋰離子的嵌入,電池容量急劇下降。如果發生正極材料體積過度膨脹,也會破壞電池的物理結構,造成電池的損壞。對于電池管理系統(BMS)而言,除了均衡功能外,均衡策略的制定同樣至關重要。電動...
儲能BMS廠商一般從動力電池BMS發展而來,因此,很多設計和名詞有歷史沿革比如動力電池里一般分為BMU(BatteryMonitorUnit)和BCU(BatteryControlUnit)前者采集,后者控制。因為電芯是一個電化學的過程,多個電芯組成一個電池,由于每個電芯特性,無論制造多精密,隨使用時間,環境,各個電芯都會存在誤差與不一致的地方,故電池管理系統,就是通過有限的參數,去評估當前電池的狀態,有點像中醫看病,通過表征,看你得了啥病,不是西醫,需要一些理化分析,人體的理化分析就像電池的電化學特性,可以通過大型試驗儀器去測量,但是嵌入式系統很難去評估電化學的一些指標,故BMS就是一個老中...