靶丸殼層折射率、厚度及其分布參數(shù)是激光慣性約束聚變(ICF)物理實(shí)驗(yàn)中非常關(guān)鍵的參數(shù),精密測(cè)量靶丸殼層折射率、厚度及其分布對(duì)ICF精密物理實(shí)驗(yàn)研究具有非常重要的意義。由于靶丸尺寸微小(亞毫米量級(jí))、結(jié)構(gòu)特殊(球形結(jié)構(gòu))、測(cè)量精度要求高,如何實(shí)現(xiàn)靶丸殼層折射率及其厚度分布的精密測(cè)量是靶參數(shù)測(cè)量技術(shù)研究中重要的研究?jī)?nèi)容。本論文針對(duì)靶丸殼層折射率及厚度分布的精密測(cè)量需求,開(kāi)展了基于白光干涉技術(shù)的靶丸殼層折射率及厚度分布測(cè)量技術(shù)研究。白光干涉膜厚測(cè)量技術(shù)可以通過(guò)對(duì)干涉圖像的分析實(shí)現(xiàn)對(duì)薄膜的表面和內(nèi)部結(jié)構(gòu)的聯(lián)合測(cè)量和分析。湖南高速膜厚儀
論文主要以半導(dǎo)體鍺和貴金屬金兩種材料為對(duì)象,研究了白光干涉法、表面等離子體共振法和外差干涉法實(shí)現(xiàn)納米級(jí)薄膜厚度準(zhǔn)確測(cè)量的可行性。由于不同材料薄膜的特性不同,所適用的測(cè)量方法也不同。半導(dǎo)體鍺膜具有折射率高,在通信波段(1550nm附近)不透明的特點(diǎn),選擇采用白光干涉的測(cè)量方法;而厚度更薄的金膜的折射率為復(fù)數(shù),且能激發(fā)的表面等離子體效應(yīng),因而可借助基于表面等離子體共振的測(cè)量方法;為了進(jìn)一步改善測(cè)量的精度,論文還研究了外差干涉測(cè)量法,通過(guò)引入高精度的相位解調(diào)手段,檢測(cè)P光與S光之間的相位差提升厚度測(cè)量的精度。高采樣速率膜厚儀廠(chǎng)家直銷(xiāo)價(jià)格白光干涉膜厚測(cè)量技術(shù)可以通過(guò)對(duì)干涉圖像的分析實(shí)現(xiàn)對(duì)薄膜的形貌測(cè)量。
光譜法是以光的干涉效應(yīng)為基礎(chǔ)的一種薄膜厚度測(cè)量方法,分為反射法和透射法兩類(lèi)[12]。入射光在薄膜-基底-薄膜界面上的反射和透射會(huì)引起多光束干涉效應(yīng),不同特性的薄膜材料的反射率和透過(guò)率曲線(xiàn)是不同的,并且在全光譜范圍內(nèi)與厚度之間是一一對(duì)應(yīng)關(guān)系。因此,根據(jù)這一光譜特性可以得到薄膜的厚度以及光學(xué)參數(shù)。光譜法的優(yōu)點(diǎn)是可以同時(shí)測(cè)量多個(gè)參數(shù)且可以有效的排除解的多值性,測(cè)量范圍廣,是一種無(wú)損測(cè)量技術(shù);缺點(diǎn)是對(duì)樣品薄膜表面條件的依賴(lài)性強(qiáng),測(cè)量穩(wěn)定性較差,因而測(cè)量精度不高;對(duì)于不同材料的薄膜需要使用不同波段的光源等。目前,這種方法主要應(yīng)用于有機(jī)薄膜的厚度測(cè)量。
干涉法與分光光度法都是利用相干光形成等厚干涉條紋的原理來(lái)確定薄膜厚度和折射率,然而與薄膜自發(fā)產(chǎn)生的等傾干涉不同,干涉法是通過(guò)設(shè)置參考光路,形成與測(cè)量光路間的干涉條紋,因此其相位信息包含兩個(gè)部分,分別是由參考平面和測(cè)量平面間掃描高度引起的附加相位和由透明薄膜內(nèi)部多次反射引起的膜厚相位。干涉法測(cè)量光路使用面陣CCD接收參考平面和測(cè)量平面間相干波面的干涉光強(qiáng)分布,不同于以上三種點(diǎn)測(cè)量方式,可一次性生成薄膜待測(cè)區(qū)域的表面形貌信息,但同時(shí)由于存在大量軸向掃描和數(shù)據(jù)解算,完成單次測(cè)量的時(shí)間相對(duì)較長(zhǎng)。白光干涉膜厚測(cè)量技術(shù)可以實(shí)現(xiàn)對(duì)薄膜的快速測(cè)量和分析。
根據(jù)以上分析可知,白光干涉時(shí)域解調(diào)方案的優(yōu)點(diǎn)是:①能夠?qū)崿F(xiàn)測(cè)量;②抗干擾能力強(qiáng),系統(tǒng)的分辨率與光源輸出功率的波動(dòng),光源的波長(zhǎng)漂移以及外界環(huán)境對(duì)光纖的擾動(dòng)等因素?zé)o關(guān);③測(cè)量精度與零級(jí)干涉條紋的確定精度以及反射鏡的精度有關(guān);④結(jié)構(gòu)簡(jiǎn)單,成本較低。但是,時(shí)域解調(diào)方法需要借助掃描部件移動(dòng)干涉儀一端的反射鏡來(lái)進(jìn)行相位補(bǔ)償,所以?huà)呙柩b置的分辨率將影響系統(tǒng)的精度。采用這種解調(diào)方案的測(cè)量分辨率一般是幾個(gè)微米,達(dá)到亞微米的分辨率,主要受機(jī)械掃描部件的分辨率和穩(wěn)定性限制。文獻(xiàn)[46]所報(bào)道的位移掃描的分辨率可以達(dá)到0.54μm。當(dāng)所測(cè)光程差較小時(shí),F(xiàn)-P腔前后表面干涉峰值相距很近,難以區(qū)分,此時(shí)時(shí)域解調(diào)方案的應(yīng)用受到限制。白光干涉膜厚測(cè)量技術(shù)可以應(yīng)用于納米制造中的薄膜厚度測(cè)量。特色服務(wù)膜厚儀供應(yīng)
白光干涉膜厚測(cè)量技術(shù)可以通過(guò)對(duì)干涉曲線(xiàn)的分析實(shí)現(xiàn)對(duì)薄膜的光學(xué)參數(shù)測(cè)量。湖南高速膜厚儀
常用白光垂直掃描干涉系統(tǒng)的原理示意圖,入射的白光光束通過(guò)半反半透鏡進(jìn)入到顯微干涉物鏡后,被分光鏡分成兩部分,一個(gè)部分入射到固定的參考鏡,一部分入射到樣品表面,當(dāng)參考鏡表面和樣品表面的反射光通過(guò)分光鏡后,再次匯聚發(fā)生干涉,干涉光通過(guò)透鏡后,利用電荷耦合器(CCD)可探測(cè)整個(gè)視場(chǎng)內(nèi)雙白光光束的干涉圖像。利用Z向精密位移臺(tái)帶動(dòng)干涉鏡頭或樣品臺(tái)Z向掃描,可獲得一系列的干涉圖像。根據(jù)干涉圖像序列中對(duì)應(yīng)點(diǎn)的光強(qiáng)隨光程差變化曲線(xiàn),可得該點(diǎn)的Z向相對(duì)位移;然后,由CCD圖像中每個(gè)像素點(diǎn)光強(qiáng)最大值對(duì)應(yīng)的Z向位置獲得被測(cè)樣品表面的三維形貌。湖南高速膜厚儀