通過基于表面等離子體共振傳感的測量方案,結合共振曲線的三個特征參數,即共振角、半高寬和反射率小值,反演計算可以精確地得到待測金屬薄膜的厚度和介電常數。該方案操作簡單,利用Kretschmann型結構的表面等離子體共振實驗系統即可得到共振曲線,從而得到金膜的厚度。由于該方案為一種強度測量方案,受環境影響較大,測量結果存在多值性問題,因此研究人員進一步對偏振外差干涉的改進方案進行了理論分析,從P光和S光之間相位差的變化來實現厚度測量。操作之前需要專業技能和經驗的培訓和實踐。薄膜膜厚儀找哪里
白光干涉的相干原理早在1975年就被提出,并在1976年實現了在光纖通信領域中的應用。1983年,Brian Culshaw的研究小組報道了白光干涉技術在光纖傳感領域中的應用。隨后在1984年,報道了基于白光干涉原理的完整的位移傳感系統。這項研究成果證明了白光干涉技術可以用于測量能夠轉換成位移的物理參量。此后的幾年中,白光干涉技術應用于溫度、壓力等的研究也相繼被報道。自上世紀90年代以來,白光干涉技術得到了快速發展,提供了更多實現測量的解決方案。近年來,由于傳感器設計和研制的進步,信號處理的新方案提出,以及傳感器的多路復用等技術的發展,使白光干涉測量技術的發展更加迅速。薄膜膜厚儀使用誤區標準樣品的選擇和使用對于保持儀器準確度至關重要。
基于白光干涉法的晶圓膜厚測量裝置,其特征在于:該裝置包括白光光源、顯微鏡、分束鏡、干涉物鏡、光纖傳輸單元、準直器、光譜儀、USB傳輸線、計算機;光譜儀主要包括六部分,分別是:光纖入口、準直鏡、光柵、聚焦鏡、區域檢測器、帶OFLV濾波器的探測器;
光源發出的白光經準直鏡擴束準直后成平行光,經分束鏡射入Michelson干涉物鏡,準直透鏡將白光縮束準直后垂直照射到待測晶圓上,反射光之間相互發生干涉,經準直鏡后干涉光強進入光纖耦合單元,完成干涉部分;
光纖傳輸的干涉信號進入光譜儀,計算機定時從光譜儀中采集光譜信號,獲取諸如光強、反射率等信息,計算機對這些信息進行信號處理,濾除高頻噪聲信息,然后對光譜信息進行歸一化處理,利用峰值對應的波長值,計算晶圓膜厚。
在激光慣性約束聚變(ICF)物理實驗中,靶丸殼層折射率、厚度以及其分布參數是非常關鍵的參數。因此,實現對靶丸殼層折射率、厚度及其分布的精密測量對精密ICF物理實驗研究非常重要。由于靶丸尺寸微小、結構特殊、測量精度要求高,因此如何實現對靶丸殼層折射率及其厚度分布的精密測量是靶參數測量技術研究中的重要內容。本文針對這一需求,開展了基于白光干涉技術的靶丸殼層折射率及厚度分布測量技術研究。精確測量靶丸殼層折射率、厚度及其分布是激光慣性約束聚變中至關重要的,對于ICF物理實驗的研究至關重要。由于靶丸特殊的結構和微小的尺寸,以及測量的高精度要求,如何實現靶丸殼層折射率及其厚度分布的精密測量是靶參數測量技術研究中的重要目標。本文就此需求開展了基于白光干涉技術的靶丸殼層折射率及厚度分布測量技術的研究。白光干涉膜厚儀可以配合不同的軟件進行分析和數據處理,例如建立數據庫、統計數據等。
目前,應用的顯微干涉方式主要有Mirau顯微干涉和Michelson顯微干涉兩張方式。在Mirau型顯微干涉結構,在該結構中物鏡和被測樣品之間有兩塊平板,一個是涂覆有高反射膜的平板作為參考鏡,另一塊涂覆半透半反射膜的平板作為分光棱鏡,由于參考鏡位于物鏡和被測樣品之間,從而使物鏡外殼更加緊湊,工作距離相對而言短一些,其倍率一般為10-50倍,Mirau顯微干涉物鏡參考端使用與測量端相同顯微物鏡,因此沒有額外的光程差。是常用的方法之一。白光干涉膜厚儀需要校準。本地膜厚儀廠家現貨
膜厚儀的干涉測量能力較高,可以提供精確和可信的膜層厚度測量結果。薄膜膜厚儀找哪里
常用白光垂直掃描干涉系統的原理:入射的白光光束通過半反半透鏡進入到顯微干涉物鏡后,被分光鏡分成兩部分,一個部分入射到固定的參考鏡,一部分入射到樣品表面,當參考鏡表面和樣品表面的反射光通過分光鏡后,再次匯聚產生干涉條紋,干涉光通過透鏡后,利用電荷耦合器(CCD)可探測整個視場內雙白光光束的干涉圖像。利用Z向精密位移臺帶動干涉鏡頭或樣品臺Z向掃描,可獲得一系列的干涉圖像。根據干涉圖像序列中對應點的光強隨光程差變化曲線,可得該點的Z向相對位移;然后,由CCD圖像中每個像素點光強最大值對應的Z向位置獲得被測樣品表面的三維形貌。薄膜膜厚儀找哪里