在激光慣性約束聚變(ICF)物理實驗中,靶丸殼層折射率、厚度以及其分布參數是非常關鍵的參數。因此,實現對靶丸殼層折射率、厚度及其分布的精密測量對精密ICF物理實驗研究非常重要。由于靶丸尺寸微小、結構特殊、測量精度要求高,因此如何實現對靶丸殼層折射率及其厚度分布的精密測量是靶參數測量技術研究中的重要內容。本文針對這一需求,開展了基于白光干涉技術的靶丸殼層折射率及厚度分布測量技術研究。精確測量靶丸殼層折射率、厚度及其分布是激光慣性約束聚變中至關重要的,對于ICF物理實驗的研究至關重要。由于靶丸特殊的結構和微小的尺寸,以及測量的高精度要求,如何實現靶丸殼層折射率及其厚度分布的精密測量是靶參數測量技術研究中的重要目標。本文就此需求開展了基于白光干涉技術的靶丸殼層折射率及厚度分布測量技術的研究。這種膜厚儀可以測量大氣壓下,1nm到1mm范圍內的薄膜厚度。品牌膜厚儀廠家直銷價格
薄膜材料的厚度在納米級薄膜的各項相關參數中,是制備和設計中一個重要的參量,也是決定薄膜性質和性能的關鍵參量之一。然而,由于其極小尺寸及表面效應的影響,納米級薄膜的厚度準確測量變得困難。科研技術人員通過不斷的探索研究,提出了新的薄膜厚度測量理論和技術,并將測量方法從手動到自動、有損到無損等不斷改進。對于不同性質的薄膜,其適用的厚度測量方案也不相同。在納米級薄膜中,采用光學原理的測量技術可以實現精度高、速度快、無損測量等優點,成為主要的檢測手段。典型的測量方法包括橢圓偏振法、干涉法、光譜法、棱鏡耦合法等。原裝膜厚儀常見問題Michelson干涉儀的光路長度是影響儀器精度的重要因素。
基于白光干涉光譜單峰值波長移動的鍺膜厚度測量方案研究:在對比研究目前常用的白光干涉測量方案的基礎上,我們發現當兩干涉光束的光程差非常小導致其干涉光譜只有一個干涉峰時,常用的基于兩相鄰干涉峰間距的解調方案不再適用。為此,我們提出了適用于極小光程差并基于干涉光譜單峰值波長移動的測量方案。干涉光譜的峰值波長會隨著光程差的增大出現周期性的紅移和藍移,當光程差在較小范圍內變化時,峰值波長的移動與光程差成正比。根據這一原理,搭建了光纖白光干涉溫度傳感系統對這一測量解調方案進行驗證,得到了光纖端面半導體鍺薄膜的厚度。實驗結果顯示鍺膜的厚度為,與臺階儀測量結果存在,這是因為薄膜表面本身并不光滑,臺階儀的測量結果只能作為參考值。鍺膜厚度測量誤差主要來自光源的波長漂移和溫度控制誤差。
用峰峰值法處理光譜數據時,被測光程差的分辨率取決于光譜儀或CCD的分辨率。我們只需要獲取相鄰的兩個干涉峰值處的波長信息,即可確定光程差,不必關心此波長處的光強大小,從而降低了數據處理難度。此外,也可以利用多組相鄰干涉光譜極值對應的波長分別求出光程差,然后再求平均值作為測量結果,以提高該方法的測量精度。但是,峰峰值法存在著一些缺點:當使用寬帶光源時,不可避免地會有與光源同分布的背景光疊加在接收光譜中,從而引起峰值處波長的改變,從而引入測量誤差。同時,當兩干涉信號之間的光程差很小,導致其干涉光譜只有一個干涉峰時,此法便不再適用。總的來說,白光干涉膜厚儀是一種應用廣、具有高精度和可靠性的薄膜厚度測量儀器。
光學測厚方法集光學、機械、電子、計算機圖像處理技術為一體,以其光波長為測量基準,從原理上保證了納米級的測量精度。同時,光學測厚作為非接觸式的測量方法,被廣泛應用于精密元件表面形貌及厚度的無損測量。其中,薄膜厚度光學測量方法按光吸收、透反射、偏振和干涉等光學原理可分為橢圓偏振法、分光光度法、干涉法等多種測量方法。不同的測量方法,其適用范圍各有側重,褒貶不一。因此結合多種測量方法的多通道式復合測量法也有研究,如橢圓偏振法和光度法結合的光譜橢偏法,彩色共焦光譜干涉和白光顯微干涉的結合法等。白光干涉膜厚測量技術可以在不同環境下進行測量。品牌膜厚儀廠家直銷價格
精度高的白光干涉膜厚儀通常采用Michelson干涉儀的結構。品牌膜厚儀廠家直銷價格
對同一靶丸的相同位置進行白光垂直掃描干涉實驗,如圖4-3所示。通過控制光學輪廓儀的運動機構帶動干涉物鏡在垂直方向上移動,測量光線穿過靶丸后反射到參考鏡與到達基底后直接反射回參考鏡的光線之間的光程差。顯然,越偏離靶丸中心的光線測得的有效壁厚越大,其光程差也越大,但這并不表示靶丸殼層的厚度。只有當垂直穿過靶丸中心的光線測得的光程差才對應于靶丸的上、下殼層的厚度。因此,在進行白光垂直掃描干涉實驗時,需要選擇穿過靶丸中心的光線位置進行測量,這樣才能準確地測量靶丸殼層的厚度。此外,通過控制干涉物鏡在垂直方向上移動,可以測量出不同位置的厚度值,從而得到靶丸殼層厚度的空間分布情況。品牌膜厚儀廠家直銷價格