根據物體表面的散射特性,可確定入射光與成像透鏡光軸的夾角。激光入射到被測物體表面,散射光強度成橢球型分布[6]。當入射光垂直入射時,α值越小,成像透鏡接收到的散射光強度越大,但角度過小對探測器分辨率要求及制作工藝上都有較高難度,綜合考慮取α值為21.8°,由儀器的測量范圍±10mm可得到物距為53.85mm。通常情況下,庫克三元組有很好的成像效果[7],因此選擇庫克三元組作為成像透鏡的初始結構進行優化。優化過程中以各個鏡片表面的半徑為變量,控制厚度在適當范圍,同時將像面與光軸的夾角β設為可變,采用CODEV的橫向像差與波像差相結合的方式進行優化,得到下面的結果。圖3為優化后的成像光學系統高精度激光位移傳感器采用激光技術,能夠實現非常精確的位移測量。長寧區激光位移傳感器調試
在一個實施例中,上述感光元件7可以為線陣CCD感光芯片,或者也可以是線陣CMOS感光芯片。在線陣CCD感光芯片或線陣CMOS感光芯片中,包括線形排列的多個感光單元,通常為直線排列,該直線的延伸方向為感光單元的主要排列方向,這些感光單元沿著水平方向(弧矢方向)排列。由于感光單元為直線狀排列,因此,長條形光斑可增加與像元之間的接觸面積,可降低機械器件形變對所述激光位移傳感器信噪比的影響。[0045]在其他實施例中,上述感光元件7可以是面陣CCD感光芯片或面陣CMOS感光芯片。面陣CCD感光芯片或面陣CMOS感光芯片包括排列為矩形的多個感光單元,矩形的長邊沿著水平方向(弧矢方向)延伸,短邊沿著豎直方向(子午方向)延伸,其長邊的延伸方向即為感光單元的主要排列方向。這樣,長條形光斑同樣更加容易地被面陣CCD感光芯片或CMOS感光芯片接收到。江西激光位移傳感器以客為尊激光位移傳感器是利用激光技術進行測量的傳感器。
公開號為CN 1 05138193A的中國發明專利申請公開一種用于光學觸摸屏的攝像模組及其鏡頭,具體而言,該專利申請采用拉高成像物鏡T方向的MTF值、壓低S方向的調質傳遞函數(MTF)值,來提高光學觸摸屏裝置的靈敏性能。因此,該patent對于如何提高光學觸摸屏的靈敏性能,提出了解決方案。但是,激光位移傳感器不同于光學觸摸屏,隨著激光位移傳感器的使用,很可能會因為振動、機械變形等原因,使得激光器發出的光斑無法正確投向傳感器,進而導致無法進行準確檢測、甚至完全無法進行測量的問題。而對于激光位移傳感器所面臨的設計難度高、易受振動和機械變形影響的問題,上述patent無能為力。[0007]針對上述問題,目前尚未提出有效的解決方案。
將紙幣放置在平臺上,調整感測頭與紙幣的距離大約在30mm左右,直至焦點對準紙幣且監視器中顯示可變化的讀數;(2)按下人機界面中的Start按鈕,平臺將以設置好的速度、相鄰數據點物理間隔和時間間隔進行移動,直到數據采集完為止;(3)保存步驟(2)中所采集到的數據,取下紙幣,對平臺進行復位;(4)重復步驟(2)操作,采集到的為平臺表面離基準線間的距離,為了減小平臺表面起伏對紙幣表面檢測的影響,將步驟(2)中采集到的數據減去步驟(4)中的數據;它可以用于測量建筑結構的變形和振動。
一種激光位移傳感器檢驗校準裝置,其特征在于:包括一可伸縮導軌、一微調裝置、一傳感器夾持裝置、一激光位移傳感器以及一激光紅外線接收擋板;所述微調裝置和傳感器夾持裝置設于所述可伸縮導軌的上端;所述激光位移傳感器夾持在所述傳感器夾持裝置上,且使所述激光位移傳感器的激光發射端朝向所述微調裝置;所述激光紅外線接收擋板與所述微調裝置固接,且使所述激光紅外線接收擋板的接收面朝向所述傳感器夾持裝置。啊啊啊啊啊啊啊此外,它們通常具有用戶友好的界面和操作方式,使得使用者能夠輕松地進行測量和數據分析。靜安區激光位移傳感器答疑解惑
采用激光束對目標物體進行掃描和測量,因此可以實現非接觸式的位移測量。長寧區激光位移傳感器調試
本發明涉及光學測量領域,并且特別地,涉及一種激光位移傳感器;光學傳感器是依據光學原理進行測量的儀器,這類傳感器有許多優點,例如,能夠實現非接觸和非破壞性測量、測量幾乎不受干擾、能夠實現高速傳輸以及可遙測、遙控、可實時處理等優點。光學傳感器包括很多類型,其中,以激光三角法為基本原理的激光位移傳感器是一種利用激光為光源、將CMOS(ComplementaryMetalOxideSemiconductor,互補金屬氧化物半導體)或者CCD(Charge-coupledDevice,電荷耦合元件)傳感器作為接收器的精密測量儀器。這種傳感器能夠在非接觸的情況下精確測量被測物體的位置、位移等變化,并且能夠被應用于檢測物體的位移、厚度、振動、距離、直徑等幾何量的測量。長寧區激光位移傳感器調試