白光干涉時域解調方案需要借助機械掃描部件帶動干涉儀的反射鏡移動 ,補償光程差,實現對信號的解調[44-45]。系統基本結構如圖2-1所示。光纖白光干涉儀的兩輸出臂分別作為參考臂和測量臂,作用是將待測的物理量轉換為干涉儀兩臂的光程差變化。測量臂因待測物理量而增加了一個未知的光程,參考臂則通過移動反射鏡來實現對測量臂引入的光程差的補償。當干涉儀兩臂光程差ΔL=0時,即兩干涉光束為等光程的時候,出現干涉極大值,可以觀察到中心零級干涉條紋,而這一現象與外界的干擾因素無關,因而可據此得到待測物理量的值。干擾輸出信號強度的因素包括:入射光功率、光纖的傳輸損耗、各端面的反射等。外界環境的擾動會影響輸出信號的強度,但是對零級干涉條紋的位置不會產生影響。廣泛應用于電子、半導體、光學、化學等領域,為研究和開發提供了有力的手段。薄膜干涉膜厚儀哪個品牌好
針對靶丸自身獨特的特點及極端實驗條件需求 ,使得靶丸參數的測試工作變得異常復雜。如何精確地測定靶丸的光學參數,一直是激光聚變研究者非常關注的課題。由于光學測量方法具有無損、非接觸、測量效率高、操作簡便等優越性,靶丸參數測量通常采用光學測量方式。常用的光學參數測量手段很多,目前,常用于測量靶丸幾何參數或光學參數的測量方法有白光干涉法、光學顯微干涉法、激光差動共焦法等。靶丸殼層折射率是沖擊波分時調控實驗研究中的重要參數,因此,精密測量靶丸殼層折射率十分有意義。而常用的折射率測量方法[13],如橢圓偏振法、折射率匹配法、白光光譜法、布儒斯特角法等。高速膜厚儀詳情白光干涉膜厚測量技術可以實現對薄膜的快速測量和分析。
薄膜是指分子 、原子或者是離子在基底表面沉積形成的一種特殊的二維材料。近幾十年來,隨著材料科學和鍍膜工藝的不斷發展,厚度在納米量級(幾納米到幾百納米范圍內)薄膜的研究和應用迅速增加。與體材料相比,因為納米薄膜的尺寸很小,使得表面積與體積的比值增加,表面效應所表現出的性質非常突出,因而在光學性質和電學性質上有許多獨特的表現。納米薄膜應用于傳統光學領域,在生產實踐中也得到了越來越廣泛的應用,尤其是在光通訊、光學測量,傳感,微電子器件,生物與醫學工程等領域的應用空間更為廣闊。
干涉測量法[9-10]是基于光的干涉原理實現對薄膜厚度測量的光學方法 ,是一種高精度的測量技術。采用光學干涉原理的測量系統一般具有結構簡單,成本低廉,穩定性好,抗干擾能力強,使用范圍廣等優點。對于大多數的干涉測量任務,都是通過薄膜表面和基底表面之間產生的干涉條紋的形狀和分布規律,來研究干涉裝置中待測物理量引入的光程差或者是位相差的變化,從而達到測量目的。光學干涉測量方法的測量精度可達到甚至優于納米量級,而利用外差干涉進行測量,其精度甚至可以達到10-3nm量級[11]。根據所使用光源的不同,干涉測量方法又可以分為激光干涉測量和白光干涉測量兩大類。激光干涉測量的分辨率更高,但是不能實現對靜態信號的測量,只能測量輸出信號的變化量或者是連續信號的變化,即只能實現相對測量。而白光干涉是通過對干涉信號中心條紋的有效識別來實現對物理量的測量,是一種測量方式,在薄膜厚度的測量中得到了廣泛的應用。隨著技術的進步和應用領域的拓展,白光干涉膜厚儀的性能和功能將不斷提高和擴展 。
在初始相位為零的情況下 ,當被測光與參考光之間的光程差為零時,光強度將達到最大值。為探測兩個光束之間的零光程差位置,需要精密Z向運動臺帶動干涉鏡頭作垂直掃描運動或移動載物臺,垂直掃描過程中,用探測器記錄下干涉光強,可得白光干涉信號強度與Z向掃描位置(兩光束光程差)之間的變化曲線。干涉圖像序列中某波長處的白光信號強度隨光程差變化示意圖,曲線中光強極大值位置即為零光程差位置,通過零過程差位置的精密定位,即可實現樣品表面相對位移的精密測量;通過確定最大值對應的Z向位置可獲得被測樣品表面的三維高度。白光干涉膜厚測量技術的優化需要對實驗方法和算法進行改進 。國內膜厚儀誠信企業推薦
可測量大氣壓下薄膜厚度在1納米到1毫米之間。薄膜干涉膜厚儀哪個品牌好
光鏡和參考板組成,光源發出的光經過顯微鏡后被分光棱鏡分成兩部分,一束作為參考光入射到參考鏡并反射,另一束作為測量光入射到樣品表面被反射,兩束反射光反射到分光棱鏡并發生干涉。由于實驗中需要調節樣品與被測樣品的角度,以便更好進行測量,5XMichelson型干涉物鏡可以通過其配置的兩個旋鈕進行調節,旋鈕能夠在較大的范圍內調節參考鏡角度,可以調節到理想角度。光纖在測試系統中負責傳光,將顯微鏡視場干涉信號傳輸到微型光譜儀。系統選用光纖為海洋光學公司生產的高級光纖組件,光纖連接線的內層為硅樹脂包裹的單線鋼圈,外層為諾梅克斯編織物,以求更好地減輕應力并起到有效的保護作用。該組件末段是易于操作的金屬環---高精密度的SMA連接器。光纖一端與適配器連接,另一端與微型光譜儀連接,以將干涉光信號傳入光譜儀中。薄膜干涉膜厚儀哪個品牌好