光具有傳播的特性 ,不同波列在相遇的區域,振動將相互疊加,是各列光波獨自在該點所引起的振動矢量和。兩束光要發生干涉,應必須滿足三個相干條件,即:頻率一致、振動方向一致、相位差穩定一致。發生干涉的兩束光在一些地方振動加強,而在另一些地方振動減弱,產生規則的明暗交替變化。任何干涉測量都是完全建立在這種光波典型特性上的。下圖分別表示干涉相長和干涉相消的合振幅。與激光光源相比,白光光源的相干長度在幾微米到幾十微米內,通常都很短,更為重要的是,白光光源產生的干涉條紋具有一個典型的特征:即條紋有一個固定不變的位置,該固定位置對應于光程差為零的平衡位置,并在該位置白光輸出光強度具有最大值,并通過探測該光強最大值,可實現樣品表面位移的精密測量。此外,白光光源具有系統抗干擾能力強、穩定性好且動態范圍大、結構簡單,成本低廉等優點。因此,白光垂直掃描干涉、白光反射光譜等基于白光干涉的光學測量技術在薄膜三維形貌測量、薄膜厚度精密測量等領域得以廣泛應用。白光干涉膜厚儀需要校準。膜厚儀傳感器精度
本章主要介紹了基于白光反射光譜和白光垂直掃描干涉聯用的靶丸殼層折射率測量方法 。該方法利用白光反射光譜測量靶丸殼層光學厚度,利用白光垂直掃描干涉技術測量光線通過靶丸殼層后的光程增量,二者聯立即可求得靶丸折射率和厚度數據。在實驗數據處理方面,為解決白光干涉光譜中波峰位置難以精確確定和單極值點判讀可能存在干涉級次誤差的問題,提出MATLAB曲線擬合測定極值點波長以及利用干涉級次連續性進行干涉級次判定的數據處理方法。應用碳氫(CH)薄膜對測量結果的可靠性進行了實驗驗證。蘇州膜厚儀安裝操作注意事項白光干涉膜厚測量技術的優化需要對實驗方法和算法進行改進;
根據以上分析可知 ,白光干涉時域解調方案的優點是:①能夠實現測量;②抗干擾能力強,系統的分辨率與光源輸出功率的波動,光源的波長漂移以及外界環境對光纖的擾動等因素無關;③測量精度與零級干涉條紋的確定精度以及反射鏡的精度有關;④結構簡單,成本較低。但是,時域解調方法需要借助掃描部件移動干涉儀一端的反射鏡來進行相位補償,所以掃描裝置的分辨率將影響系統的精度。采用這種解調方案的測量分辨率一般是幾個微米,達到亞微米的分辨率,主要受機械掃描部件的分辨率和穩定性限制。文獻[46]所報道的位移掃描的分辨率可以達到0.54μm。當所測光程差較小時,F-P腔前后表面干涉峰值相距很近,難以區分,此時時域解調方案的應用受到限制。
光譜擬合法易于測量具有應用領域 ,由于使用了迭代算法,因此該方法的優缺點在很大程度上取決于所選擇的算法。隨著各種全局優化算法的引入,遺傳算法和模擬退火算法等新算法被用于薄膜參數的測量。其缺點是不夠實用,該方法需要一個較好的薄膜的光學模型(包括色散系數、吸收系數、多層膜系統),但是在實際測試過程中,薄膜的色散和吸收的公式通常不準確,尤其是對于多層膜體系,建立光學模型非常困難,無法用公式準確地表示出來。在實際應用中只能使用簡化模型,因此,通常全光譜擬合法不如極值法有效。另外該方法的計算速度慢也不能滿足快速計算的要求。光路長度越長,儀器分辨率越高,但也越容易受到干擾因素的影響,需要采取降噪措施。
本文主要研究了如何采用白光干涉法、表面等離子體共振法和外差干涉法來實現納米級薄膜厚度的準確測量,研究對象為半導體鍺和貴金屬金兩種材料。由于不同材料薄膜的特性差異,所適用的測量方法也會有所不同。對于折射率高,在通信波段(1550nm附近)不透明的半導體鍺膜,采用白光干涉的測量方法;而對于厚度更薄的金膜,由于其折射率為復數,且具有表面等離子體效應,所以采用基于表面等離子體共振的測量方法會更合適。為了進一步提高測量精度,本文還研究了外差干涉測量法,通過引入高精度的相位解調手段來檢測P光與S光之間的相位差,以提高厚度測量的精度。增加光路長度可以提高儀器分辨率,但同時也會更容易受到振動等干擾,需要采取降噪措施。原裝膜厚儀供應鏈
白光干涉膜厚測量技術可以對薄膜的厚度、反射率、折射率等光學參數進行測量。膜厚儀傳感器精度
為限度提高靶丸內爆壓縮效率 ,期望靶丸所有幾何參數、物性參數均為理想球對稱狀態。因此,需要對靶丸殼層厚度分布進行精密的檢測。靶丸殼層厚度常用的測量手法有X射線顯微輻照法、激光差動共焦法、白光干涉法等。下面分別介紹了各個方法的特點與不足,以及各種測量方法的應用領域。白光干涉法[30]是以白光作為光源,寬光譜的白光準直后經分光棱鏡分成兩束光,一束光入射到參考鏡。一束光入射到待測樣品。由計算機控制壓電陶瓷(PZT)沿Z軸方向進行掃描,當兩路之間的光程差為零時,在分光棱鏡匯聚后再次被分成兩束,一束光通過光纖傳輸,并由光譜儀收集,另一束則被傳遞到CCD相機,用于樣品觀測。利用光譜分析算法對干涉信號圖進行分析得到薄膜的厚度。該方法能應用靶丸殼層壁厚的測量,但是該測量方法需要已知靶丸殼層材料的折射率,同時,該方法也難以實現靶丸殼層厚度分布的測量。膜厚儀傳感器精度