光纖白光干涉測量使用的是寬譜光源 。光源的輸出光功率和中心波長的穩定性是光源選取時需要重點考慮的參數。論文所設計的解調系統是通過檢測干涉峰值的中心波長的移動實現的,所以光源中心波長的穩定性將對實驗結果產生很大的影響。實驗中我們所選用的光源是由INPHENIX公司生產的SLED光源,相對于一般的寬帶光源具有輸出功率高、覆蓋光譜范圍寬等特點。該光源采用+5V的直流供電,標定中心波長為1550nm,且其輸出功率在一定范圍內是可調的,驅動電流可以達到600mA。白光干涉膜厚儀需要校準。薄膜干涉膜厚儀使用誤區
光學測厚方法集光學 、機械、電子、計算機圖像處理技術為一體,以其光波長為測量基準,從原理上保證了納米級的測量精度。同時,光學測厚作為非接觸式的測量方法,被廣泛應用于精密元件表面形貌及厚度的無損測量。其中,薄膜厚度光學測量方法按光吸收、透反射、偏振和干涉等光學原理可分為分光光度法、橢圓偏振法、干涉法等多種測量方法。不同的測量方法,其適用范圍各有側重,褒貶不一。因此結合多種測量方法的多通道式復合測量法也有研究,如橢圓偏振法和光度法結合的光譜橢偏法,彩色共焦光譜干涉和白光顯微干涉的結合法等。薄膜干涉膜厚儀定做價格標準樣品的選擇和使用對于保持儀器準確度至關重要。
白光干涉時域解調方案需要借助機械掃描部件帶動干涉儀的反射鏡移動 ,補償光程差,實現對信號的解調[44-45]。系統基本結構如圖2-1所示。光纖白光干涉儀的兩輸出臂分別作為參考臂和測量臂,作用是將待測的物理量轉換為干涉儀兩臂的光程差變化。測量臂因待測物理量而增加了一個未知的光程,參考臂則通過移動反射鏡來實現對測量臂引入的光程差的補償。當干涉儀兩臂光程差ΔL=0時,即兩干涉光束為等光程的時候,出現干涉極大值,可以觀察到中心零級干涉條紋,而這一現象與外界的干擾因素無關,因而可據此得到待測物理量的值。干擾輸出信號強度的因素包括:入射光功率、光纖的傳輸損耗、各端面的反射等。外界環境的擾動會影響輸出信號的強度,但是對零級干涉條紋的位置不會產生影響。
傅里葉變換是白光頻域解調方法中一種低精度的信號解調方法 。早是由G.F.Fernando和T.Liu等人提出,用于低精度光纖法布里-珀羅傳感器的解調。因此,該解調方案的原理是通過傅里葉變換得到頻域的峰值頻率從而獲得光程差,進而得到待測物理量的信息。傅里葉變換解調方案的優點是解調速度較快,受干擾信號的影響較小。但是其測量精度較低。根據數字信號處理FFT(快速傅里葉變換)理論,若輸入光源波長范圍為[]λ1,λ2,則所測光程差的理論小分辨率為λ1λ2/(λ2?λ1),所以此方法主要應用于對解調精度要求不高的場合。傅里葉變換白光干涉法是對傅里葉變換法的改進。該方法總結起來就是對采集到的光譜信號做傅里葉變換,然后濾波、提取主頻信號后進行逆傅里葉變換,然后做對數運算,并取其虛部做相位反包裹運算,由獲得的相位得到干涉儀的光程差。該方法經過實驗證明其測量精度比傅里葉變換高。這種膜厚儀可以測量大氣壓下 。
基于表面等離子體共振傳感的測量方案 ,利用共振曲線的三個特征參量—共振角、半高寬和反射率小值,通過反演計算得到待測金屬薄膜的厚度。該測量方案可同時得到金屬薄膜的介電常數和厚度,操作方法簡單。我們利用Kretschmann型結構的表面等離子體共振實驗系統,測得金膜在入射光波長分別為632.8nm和652.1nm時的共振曲線,由此得到金膜的厚度為55.2nm。由于該方案是一種強度測量方案,測量精度受環境影響較大,且測量結果存在多值性的問題,所以我們進一步對偏振外差干涉的改進方案進行了理論分析,根據P光和S光之間相位差的變化實現厚度測量。工作原理是基于膜層與底材反射率及相位差,通過測量反射光的干涉來計算膜層厚度。品牌膜厚儀找哪家
操作需要一定的專業技能和經驗,需要進行充分的培訓和實踐。薄膜干涉膜厚儀使用誤區
白光干涉光譜分析是目前白光干涉測量的一個重要方向 ,此項技術主要是利用光譜儀將對條紋的測量轉變成為對不同波長光譜的測量 。通過分析被測物體的光譜特性,就能夠得到相應的長度信息和形貌信息。相比于白光掃描干涉術,它不需要大量的掃描過程,因此提高了測量效率,而且也減小了環境對它的影響。此項技術能夠測量距離、位移、塊狀材料的群折射率以及多層薄膜厚度。白干干涉光譜法是基于頻域干涉的理論,采用白光作為寬波段光源,經過分光棱鏡,被分成兩束光,這兩束光分別入射到參考面和被測物體,反射回來后經過分光棱鏡合成后,由色散元件分光至探測器,記錄頻域上的干涉信號。此光譜信號包含了被測表面的信息,如果此時被測物體是薄膜,則薄膜的厚度也包含在這光譜信號當中。這樣就把白光干涉的精度和光譜測量的速度結合起來,形成了一種精度高而且速度快的測量方法。薄膜干涉膜厚儀使用誤區