在容器玻璃的生產過程中,瓶子的圓度和壁厚是重要的質量特征。因此,必須檢查這些參數。任何有缺陷的容器都會立即被拒絕并返回到玻璃熔體中。高處理速度與防止損壞瓶子的需要相結合,需要快速的非接觸式測量程序。而光譜共焦傳感器適合這項測量任務。該系統在兩個點上同步測量。數據通過 EtherCAT 接口實時輸出,厚度校準功能允許在傳感器的整個測量范圍內進行精確的厚度測量。無論玻璃顏色如何 ,自動曝光控制都可以實現穩定的測量。光譜共焦技術在醫學、材料科學、環境監測等領域有著廣泛的應用。工廠光譜共焦推薦廠家
在實踐中,光譜共焦位移傳感器可用于很多方面,如:利用獨特的光譜共焦測量原理,憑借一只探頭就可以實現對玻璃等透明材料進行精確的單向厚度測量。透明材料上表面及下表面都會形成不同波長反射光,通過計算可得出透明材料厚度。光譜共焦位移傳感器有效監控藥劑盤以及鋁塑泡罩包裝的填充量??梢允箓鞲衅魍瓿蓪Ρ粶y表面的精確掃描,實現納米級的分辨率。光譜共焦傳感器可以單向對試劑瓶的壁厚進行測量,而且對瓶壁沒有壓力??赏ㄟ^設計轉向反射鏡實現孔壁的結構檢測及凹槽深度的測盤。(創視智能已推出了90°側向出光版本探頭,可以直接進行深孔和凹槽的測量)光譜共焦傳感器用于層和玻璃間隙測且,以確定單層玻璃之間的間隙厚度 。高采樣速率光譜共焦出廠價光譜共焦位移傳感器可以應用于材料科學、生物醫學、納米技術等多個領域。
隨著機械加工水平的進步,各種的微小的復雜工件都需要進行精密尺寸測量與輪廓測量,例如:小工件內壁溝槽尺寸、小圓倒角等的測量,對于某些精密光學元件可以進行非接觸的輪廓形貌測量,避免在接觸測量時劃傷光學表面,解決了傳統傳感器很難解決的測量難題。一些精密光學元件也需要進行非接觸的輪廓形貌測量,以避免接觸測量時劃傷光學表面。這些用傳統傳感器難以解決的測量難題,均可用光譜共焦傳感器搭建測量系統以解決。通過自行塔建的二維納米測量定位裝置,選用光譜其焦傳感器作為測頭,實現測量超精密零件的二維尺寸,滾針對渦輪盤輪廓度檢測的問題,利用光譜共焦式位移傳感器使得渦輪盤輪廓度在線檢測系統的設計能夠得以實現。與此同時,在進行幾何量的整體測量過程中,還需要采取多種不同的方式對其結構體系進行優化。從而讓幾何尺寸的測量更為準確 。
高像素傳感器的設計取決于對焦水平和圖像室內空間NA的要求。同時,在光譜共焦位移傳感器中,屏幕分辨率通常采用全半寬來進行精確測量。高NA可以降低半寬,提高分辨率。因此,在設計超色差攝像鏡頭時,需要盡可能提高NA。高圖像室內空間NA可以提高傳感器系統的燈源使用率,并允許待測表面在相對大的角度或某些方向上傾斜。但是,同時提高NA也會導致球差擴大,并增加電子光學設計的優化難度。傳感器的檢測范圍主要取決于超色差鏡片的縱向色差。因為光譜儀在各個波長的像素應該是一致的 ,如果縱向色差與波長之間存在離散系統,這種離散系統也會對傳感器的像素或靈敏度在不同波長上造成較大的差別,從而損害傳感器的特性。通過使用自然散射的玻璃或者衍射光學元件(DOE)可以形成足夠強的色差。然而,制造難度和成本相對較高,且在可見光范圍內透射損耗也非常高。光譜共焦技術可以對材料表面和內部進行接觸式的檢測和分析。
光譜共焦位移傳感器包括光源、透鏡組和控制箱等組成部分。光源發出一束白光,透鏡組將其發散成一系列波長不同的單色光,通過同軸聚焦在一定范圍內形成一個連續的焦點組,每個焦點的單色光波長對應一個軸向位置。當樣品位于焦點范圍內時,樣品表面會聚焦后的光反射回去,這些反射回來的光再經過與鏡頭組焦距相同的聚焦鏡再次聚焦后通過狹縫進入控制箱中的單色儀。因此 只有位于樣品表面的焦點位置才能聚焦在狹縫上,單色儀將該波長的光分離出來,由控制箱中的光電組件識別并獲取樣品的軸向位置。采用高數值孔徑的聚焦鏡頭可以使傳感器達到較高分辨率,滿足薄膜厚度分布測量要求。光譜共焦位移傳感器通常由光源、光譜儀、探測器和信號處理器等組成。怎樣選擇光譜共焦廠家現貨
光譜共焦位移傳感器的工作原理是通過激光束和光纖等光學元件實現的。工廠光譜共焦推薦廠家
光譜共焦位移傳感器原理,由光源、透鏡組、控制箱等組成。光源發出1束白光,透鏡組先將白光發散成一系列波長不同的單色光,然后經同軸聚焦在一定范圍內形成1個連續的焦點組,每個焦點的單色光波長對應1個軸向位置。當樣品處于焦點范圍內時,樣品表面將聚焦后的光反射回去。這些反射回來的光經過與鏡頭組焦距相同的聚焦鏡再次聚焦后通過狹縫進入控制箱中的單色儀。因此,只有焦點位置正好處于樣品表面的單色光才能聚焦在狹縫上 。單色儀將該波長的光分離出來,由控制箱中的光電組件識別并?得到樣品的軸向位置。采用高數值孔徑的聚焦鏡頭可以使傳感器達到較高分辨率,滿足薄膜厚度分布測量要求。工廠光譜共焦推薦廠家