基于表面等離子體共振傳感的測量方案 ,利用共振曲線的三個特征參量—共振角、半高寬和反射率小值,通過反演計算得到待測金屬薄膜的厚度。該測量方案可同時得到金屬薄膜的介電常數和厚度,操作方法簡單。我們利用Kretschmann型結構的表面等離子體共振實驗系統,測得金膜在入射光波長分別為632.8nm和652.1nm時的共振曲線,由此得到金膜的厚度為55.2nm。由于該方案是一種強度測量方案,測量精度受環境影響較大,且測量結果存在多值性的問題,所以我們進一步對偏振外差干涉的改進方案進行了理論分析,根據P光和S光之間相位差的變化實現厚度測量。白光干涉膜厚儀需要校準。蘇州膜厚儀詳情
白光干涉頻域解調顧名思義是在頻域分析解調信號 ,測量裝置與時域解調裝置幾乎相同,只需把光強測量裝置換為光譜儀或者是CCD ,接收到的信號是光強隨著光波長的分布。由于時域解調中接收到的信號是一定范圍內所有波長的光強疊加,因此將頻譜信號中各個波長的光強疊加,即可得到與它對應的時域接收信號。由此可見,頻域的白光干涉條紋不僅包含了時域白光干涉條紋的所有信息,還包含了時域干涉條紋中沒有的波長信息。在頻域干涉中,當兩束相干光的光程差遠大于光源的相干長度時,仍可以在光譜儀上觀察到頻域干涉條紋。這是由于光譜儀內部的光柵具有分光作用,能夠將寬譜光變成窄帶光譜,從而增加了光譜的相干長度。這一解調技術的優點就是在整個測量系統中沒有使用機械掃描部件,從而在測量的穩定性和可靠性上得到很大的提高。常見的頻域解調方法有峰峰值檢測法、傅里葉解調法以及傅里葉變換白光干涉解調法等。膜厚儀定做白光干涉膜厚測量技術可以對薄膜的厚度、反射率、折射率等光學參數進行測量。
采用峰峰值法處理光譜數據時 ,被測光程差的分辨率取決于光譜儀或CCD的分辨率。我們只需獲得相鄰的兩干涉峰值處的波長信息即可得出光程差,不必關心此波長處的光強大小,從而降低數據處理的難度。也可以利用多組相鄰的干涉光譜極值對應的波長來分別求出光程差,然后再求平均值作為測量光程差,這樣可以提高該方法的測量精度。但是,峰峰值法存在著一些缺點:當使用寬帶光源作為輸入光源時,接收光譜中不可避免地疊加有與光源同分布的背景光,從而引起峰值處波長的改變,引入測量誤差。同時,當兩干涉信號之間的光程差很小,導致其干涉光譜只有一個干涉峰的時候,此法便不再適用。
論文所研究的鍺膜厚度約300nm ,導致其白光干涉輸出光譜只有一個干涉峰,此時常規基于相鄰干涉峰間距解調的方案(如峰峰值法等)將不再適用。為此,我們提出了一種基于單峰值波長移動的白光干涉測量方案,并設計搭建了膜厚測量系統。溫度測量實驗結果表明,峰值波長與溫度變化之間具有良好的線性關系。利用該測量方案,我們測得實驗用鍺膜的厚度為338.8nm,實驗誤差主要來自于溫度控制誤差和光源波長漂移。論文通過對納米級薄膜厚度的測量方案研究,實現了對鍺膜和金膜的厚度測量。論文主要的創新點是提出了白光干涉單峰值波長移動的解調方案,并將其應用于極短光程差的測量。總的來說,白光干涉膜厚儀是一種應用很廣的測量薄膜厚度的儀器。
傅里葉變換是白光頻域解調方法中一種低精度的信號解調方法 。早是由G.F.Fernando和T.Liu等人提出,用于低精度光纖法布里-珀羅傳感器的解調。因此,該解調方案的原理是通過傅里葉變換得到頻域的峰值頻率從而獲得光程差,進而得到待測物理量的信息。傅里葉變換解調方案的優點是解調速度較快,受干擾信號的影響較小。但是其測量精度較低。根據數字信號處理FFT(快速傅里葉變換)理論,若輸入光源波長范圍為[]λ1,λ2,則所測光程差的理論小分辨率為λ1λ2/(λ2?λ1),所以此方法主要應用于對解調精度要求不高的場合。傅里葉變換白光干涉法是對傅里葉變換法的改進。該方法總結起來就是對采集到的光譜信號做傅里葉變換,然后濾波、提取主頻信號后進行逆傅里葉變換,然后做對數運算,并取其虛部做相位反包裹運算,由獲得的相位得到干涉儀的光程差。該方法經過實驗證明其測量精度比傅里葉變換高。隨著技術的不斷進步和應用領域的擴展,白光干涉膜厚儀的性能和功能將得到進一步提高。防水膜厚儀設備生產
可測量大氣壓下薄膜厚度在1納米到1毫米之間。蘇州膜厚儀詳情
在白光反射光譜探測模塊中,入射光經過分光鏡1分光后 ,一部分光通過物鏡聚焦到靶丸表面 ,靶丸殼層上、下表面的反射光經過物鏡、分光鏡1、聚焦透鏡、分光鏡2后,一部分光聚焦到光纖端面并到達光譜儀探測器,可實現靶丸殼層白光干涉光譜的測量,一部分光到達CCD探測器,可獲得靶丸表面的光學圖像。靶丸吸附轉位模塊和三維運動模塊分別用于靶丸的吸附定位以及靶丸特定角度轉位以及靶丸位置的輔助調整,測量過程中,將靶丸放置于軸系吸嘴前端,通過微型真空泵負壓吸附于吸嘴上;然后,移動位移平臺,將靶丸移動至CCD視場中心,通過Z向位移臺,使靶丸表面成像清晰;利用光譜儀探測靶丸殼層的白光反射光譜;靶丸在軸系的帶動下,平穩轉位到特定角度,由于軸系的回轉誤差,轉位后靶丸可能偏移CCD視場中心,此時可通過調整軸系前端的調心結構,使靶丸定點位于視場中心并采集其白光反射光譜;重復以上步驟,可實現靶丸特定位置或圓周輪廓白光反射光譜數據的測量。為減少外界干擾和震動而引起的測量誤差,該裝置放置于氣浮平臺上,通過高性能的隔振效果可保證測量結果的穩定性。蘇州膜厚儀詳情