主瓣之外的所有波瓣通稱副瓣或旁瓣。副瓣電平上升、副瓣能量增加時,天線的定向性降低,同時副瓣是干擾的來源,通常是有害的。主瓣與副瓣、副瓣與副瓣之間能量突降的位置稱為零點。零點是電場矢量相位變化的結果。設計合適的零點位置可以對抗干擾,反之,將零點區域填充,使能量加強,又能彌補通信覆蓋服務區某些盲點。與主瓣指向相差180度位置的副瓣稱為背瓣或后瓣,背瓣也常定義為一個區域,移動通信天線中通常是180°土30°區域,將此區域內所有副瓣的比較大電平定義為背瓣電平,主瓣電平與背瓣電平的比值稱為前后比。移動通信中通常考察水平面方向圖的前后比。對于定向性較強的移動通信基站天線,水平面的半功率波束寬度(0H3B)通常設計為65°和90”,該結果的獲得取決于天線輻射單元的結構及其三維電磁邊界條件的一體化優化設計。而垂直面的半功率波束寬度(0V3dB)通常很窄,該結果的獲得則主要取決于天線在垂直面的比較大尺寸。 天線的性能可以通過增加其長度或改變其形狀來改善。武漢放大器天線模塊
作為發射天線,如果基站收發天線共用,且采用雙極化方式,則采用垂直和水平正交極化陣子的雙極化天線和采用正負45度正交極化陣子雙極化天線相比較(假設其它條件相同),在理想的自由空間中(假定手機接收天線是垂直極化),手機接收天線接收的信號前者好于后者3dB左右。但在實際應用環境中,考慮到多徑傳播的存在,在接收點,各種多徑信號經統計平均,上述差別基本消失,各種實驗也證明了此結論的正確。但在空曠平坦的平原,上述差異或許還存在,但具體是多少,還有待實驗證明,可能會有1-2dB的差異。綜上所述,在實際應用中,西種雙極化方式的差別不大,目前市場上正負45度正交極化天線比較常見。華南電路天線終端天線的天線阻抗需要與接收或發送設備的阻抗匹配。
在移動無線電環境中信號衰落會產生嚴重問題。隨著移動臺的移動,瑞利衰落隨信號瞬時值快速變動,而對數正態衰落隨信號平均值(中值)變動。這兩者是構成移動通信接收信號不穩定的主要因素,它使接收信號**地惡化了。雖然通過增加發信功率、天線尺寸和高度等方法能取得改善,但采用這些方法在移動通信中比較昂貴,有時也顯得不切實際:而采用分集方法即在若干個支路上接收相互間相關性很小的載有同一消息的信號,然后通過合并技術再將各個支路信號合并輸出,那么便可在接收終端上**降低深衰落的概率。通常在接收站址使用分集技術,因為接收設備是無源設備,所以不會產生任何干擾。分集的形式可分為兩類,一是顯分集,二是隱分集。下面*討論顯分集,它又可以分為基站顯分集與一般顯分集兩類。
長波天線、中波天線:是工作于長波及中波波段的發射天線或接收天線的統稱。長、中波是以地波和天波傳播的,而天波則連續反射于電離層和大地之間。根據此傳播特性,長、中波天線應能產生垂直極化的電波。在長、中波天線中,應用較廣的的有垂直型、倒L型、T型、企型垂直接地天線。長、中波天線應有良好的地網。長、中波天線存在著許多技術上的問題,如有效高度小、輻射電阻小、效率低、通頻帶窄、方向性系數小等。為了解決這些問題,天線結構往往非常復雜,非常龐大。
不定向天線:在各個方向上均勻輻射或接收電磁波的天線,稱為不定向天線,如小型通信機用的鞭狀天線等。 天線可以是定向的,也可以是全向的,具體取決于其設計和用途。
天線接收信號的原理是基于電磁感應的原理。當電磁波經過天線時,其中的電場和磁場會產生變化,從而誘導出一個微弱的電流。這個電流被稱為感應電流。天線的設計和結構會影響其對不同頻率的電磁波的接收效果,一般來說,天線的長度應該與要接收的電磁波的波長相當。這是因為當天線的長度為波長的一半時,電磁波的電場和磁場在天線上的變化就會比較大化,從而產生比較大的感應電流。這種長度被稱為共振長度接收到的感應電流會被放大,然后經過處理電路轉換成可用的信號。這個信號可以是音頻信號、視頻信號或其他形式的信號取決于所使用的設備和接收臺的用途。總之,天線通過感應電流來接收電磁波信號。天線的設計和結構決定了其接收特定頻率電磁波的能力,而后續的處理電路則將感應電流轉化為可用的信號。 天線可以用于無線電通信、電視、無線網絡和衛星通信等領域。武漢GPS101天線測試方法
天線的安裝位置和方向對信號接收或發送的質量有重要影響。武漢放大器天線模塊
雖然在國家現階段的發展過程中,無線電通信技術已經被廣泛的應用到了各行業的生產與建設中,并給人們日常的生活與工作帶來了諸多的便利條件。但是一些安裝團隊在對無線電通信系統中的天線進行安裝的時候,會由于一些原因使天線的安裝質量達不到實際使用的要求,從而降低了天線對無線電通信系統的作用。為了讓天線發揮出真正的價值,為無線電通信系統的良好運作提供保障,不僅需要相關安裝團隊能夠提升天線安裝的質量和效率,還要對天線進行妥善的保護處理。這樣天線的使用壽命才能延長,為社會無線通信事業的發展貢獻力量。武漢放大器天線模塊