為了驗證動物生物樣品的時間分辨成像能力,本實驗觀察了活海拉細胞高爾基體中的青色熒光蛋白mTFP1,見圖3(a),(c)-(i)。使用的物鏡及尺寸與熒光顆粒成像一致,對比可見v2PE在空間分辨率、激發深度級圖像對比度較常規寬場顯微鏡都有所提高。此外,v2PE可以同時激發多個波長的熒光蛋白,這種技術還可以應用于細胞內分子的三維動力學多色成像。在此基礎上,實驗對海拉細胞中的高爾基體(mTFP1)和纖顫蛋白(EGFP)進行了在體成像,見圖3(j)-(n),青色為mTFP1,綠色為EGFP,實驗中兩種熒光蛋白同時成像,終采用光譜分離法將不同蛋白的熒光信號分離出來。這種雙光子顯微鏡的視場是普通顯微鏡的10倍。2PPLUS雙光子顯微鏡聯系方式
1990年初,當WinfriedDenk剛從康奈爾大學博士畢業準備前往瑞士讀博后時,他看了一本關于激光掃描顯微鏡的書,從中了解到非線性光學效應——強光和物質的相互作用。當時,Denk有同事研究生物樣品中的鈣離子但苦于沒有強大的紫外激光器和光學元件,于是他就想到如果使用雙光子吸收就能夠繞開紫外,換言之,與其通過一個紫外光子激發標記的鈣離子,通過兩個雙倍波長的可見光光子也能激發相同的熒光。有了想法后馬上實驗。借了一套染料飛秒激光器,Denk聯合他的導師WattWebb及其博士生JamesStrickler只用六個小時就完成了實驗搭建,采集數據則用了兩到三天,于是一篇里程碑式的文章就此誕生了。美國ultimainvestigator雙光子顯微鏡廠家雙光子顯微鏡為什么穿透能力強?
美國霍華德·休斯醫學研究所在Janelia Farm ResearchCampus的吉娜博士小組與來自中科院上海光機所強場激光物理國家重點實驗室的王琛博士較近成功將一種新的自適應光學的方法和雙光子顯微鏡結合,研制出一種新的自適應光學雙光子熒光顯微鏡。通過校正小鼠大腦的像差,在視覺皮層的不同深度處均獲得了提高數倍的成像分辨率和信號強度,明顯改進了成像質量,使得原來在鼠腦中不可見或者模糊的細節變得清晰可見,她們成功將該方法應用于老鼠視覺皮層第五層(約500μm)的形貌結構成像和鈣離子功能成像。這一新的自適應光學方法,使得在小鼠深層區域成像中獲得近衍射極限的成像分辨率成為現實。這一成果發表在較新一期的《Nature Methods》。
研究人員通過用不同激光波長并行化激光掃描(wavelengthmultiplexing),增加了相同時間內可以成像的體積,并同時保持較高的時間和空間分辨率。通過引入兩種波長不同的鈣信號熒光探針,研究人員將神經元群體的活動標記為兩個不同顏色,并同時用兩個不同波長的激光激發探針,實現了兩個顏色的并行化數據記錄。為了實現三維空間成像,研究人員還分別在兩個激光光路上配置了快速變焦系統,分別為電可調節透鏡(electricaltunablelens)和空間光調制器(spatiallightmodulator)。由此,可以同時以10赫茲的速度記錄500微米500微米的10個平面,覆蓋縱深達600微米,涵蓋了從腦皮層第2層到第5層的結構,體積內記錄到的神經元可以達到2000個以上。用雙光子顯微鏡看看你的皮膚有沒有重煥新生;
從雙光子的原理和特點我們就可以明顯的得出雙光子的優點:☆光損傷小:由于雙光子顯微鏡使用的是可見光或近紅外光作為激發光源,這一波段的光對***細胞和組織的光損傷小,適用于長時間的研究;☆穿透能力強:相對于紫外光,可見光和近紅外光都具有更強的穿透能力,因而受生物組織散射的影響更小,解決對生物組織中深層物質的層析成像研究問題;☆高分辨率:由于雙光子吸收截面很小,只有在焦平面很小的區域內可以激發出熒光,雙光子吸收只局限于焦點處的體積約為波長3次方的范圍內;☆漂白區域小:由于激發只存在于交點處,所以焦點以外的區域都不會發生光漂白現象;☆熒光收集率高:與共聚焦成像相比,雙光子成像不需要光學濾波器(共焦***),這樣就提高了對熒光的收集率,而收集率的提高直接導致圖像對比度的提高;☆圖像對比度高:由于熒光波長小于入射波長,因而瑞利散射產生的背景噪聲只有單光子激發時的1/16,較大降低了散射的干擾;☆光子躍遷具有很強的選擇激發性,所以可以對生物組織中一些特殊物質進行成像研究;成像平臺倒置雙光子顯微鏡啟用顯微鏡自帶調焦設備。雙光子顯微鏡成像技術
雙光子顯微鏡在各領域研究中已有許多成功實例。2PPLUS雙光子顯微鏡聯系方式
使用基因編碼的熒光探針可以在突觸和細胞分辨率下監測體內神經元信號,這是揭示動物神經活動復雜機制的關鍵。使用雙光子顯微鏡(2PM)可以以亞細胞分辨率對鈣離子傳感器和谷氨酸傳感器成像,從而測量不透明大腦深處的活動;成像膜電壓變化能直接反映神經元活動,但神經元活動的速度對于常規的2PM來說太快。目前電壓成像主要通過寬場顯微鏡實現,但它的空間分辨率較差并且只是于淺層深度。因此要在不透明的大腦中以高空間分辨率對膜電壓變化進行成像,需要較提高2PM的成像速率。FACED模塊輸出處的子脈沖序列可以看作從虛擬光源陣列發出的光,這些子脈沖在中繼到顯微鏡物鏡后形成了一個空間上分離且時間延遲的焦點陣列。然后將該模塊并入具有高速數據采集系統的標準雙光子熒光顯微鏡中,如圖2所示。光源是具有1MHz重復頻率的920nm的激光器,通過FACED模塊可產生80個脈沖焦點,其脈沖時間間隔為2ns。這些焦點是虛擬源的圖像,虛擬源越遠,物鏡處的光束尺寸越大,焦點越小。光束沿y軸比x軸能更好地充滿物鏡,從而導致x軸的橫向分辨率為0.82μm,y軸的橫向分辨率為0.35μm。2PPLUS雙光子顯微鏡聯系方式
因斯蔻浦(上海)生物科技有限公司在同行業領域中,一直處在一個不斷銳意進取,不斷制造創新的市場高度,多年以來致力于發展富有創新價值理念的產品標準,在上海市等地區的儀器儀表中始終保持良好的商業口碑,成績讓我們喜悅,但不會讓我們止步,殘酷的市場磨煉了我們堅強不屈的意志,和諧溫馨的工作環境,富有營養的公司土壤滋養著我們不斷開拓創新,勇于進取的無限潛力,因斯蔻浦供應攜手大家一起走向共同輝煌的未來,回首過去,我們不會因為取得了一點點成績而沾沾自喜,相反的是面對競爭越來越激烈的市場氛圍,我們更要明確自己的不足,做好迎接新挑戰的準備,要不畏困難,激流勇進,以一個更嶄新的精神面貌迎接大家,共同走向輝煌回來!