2020年,臨研所、病理科和科研處邀請北京大學王愛民副教授做了題目為“新一代微型雙光子顯微成像系統介紹及其在臨床醫療診斷”的學術報告。學術報告由臨研所醫學實驗研究平臺潘琳老師主持。王愛民,北京大學信息科學技術學院副教授,畢業于北京大學物理系,獲學士、碩士學位,后于英國巴斯大學物理系獲博士學位。該研究組研發的微型雙光子顯微鏡,第1次在國際上獲得了小鼠大腦神經元和神經突觸清晰穩定的動態信號,該成果獲得了2017年度“中國光學進展”和“中國科學進展”,并被NatureMethods評為2018年度“年度方法--無限制行為動物成像”。目前,該研究組正在研究新一代雙光子顯微成像技術在臨床診斷中的應用,為未來即時病理、離體組織檢測、術中診斷等提供新的影像手段和分析方法。雙光子顯微鏡有哪些分類呢?美國ultima雙光子顯微鏡供應商
細胞內鈣離子作為重要的信號分子其作用具有時間性和空間性。當個細胞興奮時,產生了一個電沖動,此時,細胞外的鈣離子流入該細胞內,促使該細胞分泌神經遞質,神經遞質與相鄰的下一級神經細胞膜上的蛋白分子結合,促使這一級神經細胞產生新的電沖動。以此類推,神經信號便一級一級地傳遞下去,從而構成復雜的信號體系,終形成學習、記憶等大腦的高級功能。在哺乳動物神經系統中,鈣離子同樣扮演著重要的信號分子的角色。靜息狀態下大部分神經元細胞內鈣離子濃度約為50-100nM,而細胞興奮時鈣離子濃度能瞬間上升10-100倍,增加的鈣離子對于突觸囊泡胞吐釋放神經遞質的過程必不可少。眾所周知,只有游離鈣才具有生物學活性,而細胞質內鈣離子濃度由鈣離子的內外流平衡所決定,同時也受鈣結合蛋白的影響。細胞外鈣離子內流的方式有很多種,其中包括電壓門控鈣離子通道、離子型谷氨酰胺受體、煙堿型膽堿能受體(nAChR)和瞬時受體電位C型通道(TRPC)等。神經元鈣成像的原理就是利用特殊的熒光染料或鈣離子指示劑將神經元中鈣離子濃度的變化通過熒光強度表現出來,以反映神經元活性。該方法可以同時去觀察多個功能或位置相關的腦細胞。美國ultima2PPLUS雙光子顯微鏡應用是什么雙光子顯微鏡除了可以進行厚的組織樣品拍攝以外呢,可以在小鼠的的任何部位進行成像。
細胞內鈣離子作為重要的信號分子其作用具有時間性和空間性。當個細胞興奮時,產生了一個電沖動,此時,細胞外的鈣離子流入該細胞內,促使該細胞分泌神經遞質,神經遞質與相鄰的下一級神經細胞膜上的蛋白分子結合,促使這一級神經細胞產生新的電沖動。以此類推,神經信號便一級一級地傳遞下去,從而構成復雜的信號體系,終形成學習、記憶等大腦的高級功能。在哺乳動物神經系統中,鈣離子同樣扮演著重要的信號分子的角色。靜息狀態下大部分神經元細胞內鈣離子濃度約為50-100nM,而細胞興奮時鈣離子濃度能瞬間上升10-100倍,增加的鈣離子對于突觸囊泡胞吐釋放神經遞質的過程必不可少。眾所周知,只有游離鈣才具有生物學活性,而細胞質內鈣離子濃度由鈣離子的內外流平衡所決定,同時也受鈣結合蛋白的影響。細胞外鈣離子內流的方式有很多種,其中包括電壓門控鈣離子通道、離子型谷氨酰胺受體、煙堿型膽堿能受體(nAChR)和瞬時受體電位C型通道(TRPC)等。神經元鈣成像的原理就是利用特殊的熒光染料或鈣離子指示劑將神經元中鈣離子濃度的變化通過熒光強度表現出來,以反映神經元活性。該方法可以同時觀察多個功能或位置相關的腦細胞。
目前,腦科學的研究在全球范圍內如火如荼,中國的腦計劃也即將啟動。其中,全景式分析腦連接圖和功能動態圖的研究成為重點研究方向,如何打破尺度壁壘,將微觀神經元和突觸的信息處理和個體行為信息與全腦融合,是該領域亟待解決的關鍵挑戰。2021年1月6日,由北京大學分子醫學研究所牽頭,北京大學信息科學與技術學院電子系、工程學院和中國人民醫學科學院組成的跨學科團隊在NatureMethods上在線發表了一篇題為《大視場、多平面、長程腦成像的微型雙光子拷貝》的文章。本文報道了第二代小型化雙光子熒光顯微鏡FHIRM-TPM2.0。其成像視場是團隊2017年發布的第1代小型化顯微鏡的7.8倍。同時具有三維成像能力,獲得了小鼠自由運動行為時大腦三維區域數千個神經元清晰穩定的動態功能圖像,實現了對同一批次神經元一個月的跟蹤記錄。雙光子顯微鏡使用高能量鎖模脈沖器。
而配合了雙光子激發技術,激光共聚掃描顯微鏡則能更好得發揮功效。那么,什么是雙光子激發技術呢?在高光子密度的情況下,熒光分子可以同時吸收2個長波長的光子使電子躍遷到較高能級,經過一個很短的時間后,電子再躍遷回低能級同時放出一個波長為長波長一半的光子(P=h/λ)。利用這個原理,便誕生了雙光子激發技術。雙光子顯微鏡使用長波長脈沖激光,通過物鏡匯聚,由于雙光子激發需要很高的光子密度,而物鏡焦點處的光子密度是比較高的,所以只有在焦點處才能發生雙光子激發,產生熒光,該點產生的熒光再穿過物鏡,從而被光探頭接收,從而達到逐點掃描的效果。雙光子顯微鏡使用的是可見光或近紅外光作為光源。investigator雙光子顯微鏡
于雙光子激發需要兩個光子同時到達,因此只有在焦點附近的樣品區域才會激發,從而實現三維成像和高分辨率。美國ultima雙光子顯微鏡供應商
在傳統寬場顯微鏡中,來自標本不同縱深的光線都可投射到同一焦平面(感光元件)上,所以其成像是整個樣品的重疊像,沒有縱向分辨能力。單光子激光共聚焦顯微鏡用針空有效濾除了雜散光,分辨率有了本質上的提高,擁有了對樣品的特定焦平面精細成像的能力,可以進行三維成像、動態成像等。然而,針空在濾除雜散光的同時也將大部分來自焦平面的熒光濾除了,只有很弱的熒光到達檢測器。若要提高信號強度,需要加大激發光功率,這又會導致對活細胞的光毒性和熒光分子的光漂白增加。雙光子顯微鏡蕞大的優勢來源于其雙光子光源的非線性光學效應,與單光子共聚焦顯微鏡蕞大的不同在于無須使用針空限制光學散射,其具體優勢如下所述。美國ultima雙光子顯微鏡供應商