膜片鉗技術與其它技術相結合Neher等**將膜片鉗技術與Fura2熒光測鈣技術結合,同時進行如細胞內熒光強度、細胞膜離子通道電流及細胞膜電容等多指標變化的快速交替測定,這樣便可得出同一事件過程中,多種因素各自的變化情況,進而可分析這些變化間的相互關系。Neher將可光解出鈣離子的鈣螯合物引入膜片鉗技術,進而可以定量研究鈣離子濃度與分泌率的關系及比較大分泌率等指標。他又創膜片鉗的膜電容檢測與碳纖電極電化學檢測聯合運用的技術。之后又將光電聯合檢測技術與碳纖電極電化學檢測技術首先結合起來。這種結合既能研究分泌機制,又能鑒別分泌物質,還能互相彌補各單種方法的不足。Eberwine等于1991年首先將膜片鉗技術與RT-PCR技術結合起來運用,可對形態相似而電活動不同的結果作出分子水平的解釋,從此開始了膜片鉗與分子生物學技術相結合的時代∶基因重組技術,膜通道蛋白重建技術。膜片鉗,您研究離子通道功能的得力助手!德國多通道膜片鉗實驗操作
對電極持續施加一個1mV、10~50ms的階躍脈沖刺激,電極入水后電阻約4~6MΩ,此時在計算機屏幕顯示框中可看到測試脈沖產生的電流波形。開始時增益不宜設得太高,一般可在1~5mV/pA,以免放大器飽和。由于細胞外液與電極內液之間離子成分的差異造成了液結電位,故一般電極剛入水時測試波形基線并不在零線上,須首先將保持電壓設置為0mV,并調節“電極失調控制“使電極直流電流接近于零。用微操縱器使電極靠近細胞,當電極前列與細胞膜接觸時封接電阻指示Rm會有所上升,將電極稍向下壓,Rm指示會進一步上升。通過細塑料管向電極內稍加負壓,細胞膜特性良好時,Rm一般會在1min內快速上升,直至形成GΩ級的高阻抗封接。一般當Rm達到100MΩ左右時,電極前列施加輕微負電壓(-30~-10mV)有助于GΩ封接的形成。此時的現象是電流波形再次變得平坦,使電極超極化由-40到-90mV,有助于加速形成封接。為證實GΩ封接的形成,可以增加放大器的增益,從而可以觀察到除脈沖電壓的首尾兩端出現電容性脈沖前列電流之外,電流波形仍呈平坦狀。滔博生物TOP-Bright專注基于多種離子通道靶點的化合物體外篩選,服務于全球藥企的膜片鉗公司,快速獲得實驗結果,專業團隊,7*55小時隨時人工在線咨詢.日本全自動膜片鉗高阻抗封接一些學者建立了組織切片膜片鉗技術(Slicepatch),就能在哺乳動物腦片制備上做全細胞記錄。
細胞是動物和人體的基本單元,細胞與細胞內的通信是依靠其膜上的離子通道進行的,離子和離子通道是細胞興奮的基礎,亦即產生生物電信號的基礎,生物電信號通常用電學或電子學方法進行測量。由此形成了一門細胞學科--電生理學。膜片鉗技術已成為研究離子通道的黃金標準。電壓門控性離子通道:膜上通道蛋白的帶點集團在膜電位改變時,在電場的作用下,重新分布導致通道的關閉,同時有電荷移動,稱為門控電流。配體門控離子通道:神經遞質(如乙酰膽堿)、ji素等與通道蛋白上的特定位點結合,引起蛋白構像的改變,導致通道的打開。
膜片鉗放大器的工作模式;(1)電壓鉗模式∶在鉗制細胞膜電位的基礎上改變膜電位,記錄離子通道電流的變化,記錄的是諸如通道電流;EPSC;IPSC等電流信號。是膜片鉗的基本工作模式.(2)屯流鉗素向細胞內注入刺激電流,記錄膜電位對刺激電流的反應。記錄的是諸如動作電位,EPSP;IPSP等電壓信號。膜片鉗技術實現膜電位固定的關鍵是在玻璃微電極前列邊緣與細胞膜之間形成高阻(10GΩ)密封,使電極前列開口處相接的細胞膜片與周圍環境在電學上隔離,并通過外加命令電壓鉗制膜電位。國內外質優膜片鉗機構,滔博生物,7*24小時隨時人工在線咨詢.
ePatch雖然設備非常小巧,但功能完備,傳統膜片鉗設備能做的實驗,用ePatch幾乎都能做。具有voltage-clamp,current-clamp,zerocurrent-clamp三種模式,自動電極電壓飄移補償,C-fast-C-slow-R-series-P/N補償,Bridgebalance補償等功能。可以做全細胞記錄也可以做單通道記錄,膜片鉗技術常做的離子通道電流,突觸后電流,動作電位檢測等實驗都能輕松實現。公司還為此開發了友好的控制和記錄軟件,筆者上手接觸了一下,發現跟AXON的軟件類似,并且程序編輯更為簡單易用。所記錄到的數據可以直接使用Clampfit進行分析,可以說對于使用過AXON設備的膜片鉗工作者來說,上手毫無難度。細胞是動物和人體的基本組成單元,細胞與細胞內的通信,是依靠其膜上的離子通道進行的。進口單通道膜片鉗產品介紹
膜片鉗技術,助您洞悉生命科學的微觀世界!德國多通道膜片鉗實驗操作
目前,絕大多數離子通道的一級結構得到了闡明但根本的還是要搞清楚各種離子通道的三維結構,在這方面,美國的二位科學家彼得阿格雷和羅德里克麥金農做出了一些開創性的工作,他們到用X光繞射方法得到了K離子通道的三維結構,二位因此獲得2003年諾貝系化學獎。有關離子通道結構不是本PPT的重點,可參考楊寶峰的<離子通道藥理學>和Hill的<lonicChannelsOfExcitableMembranes》。對離子通道功能的研究,主要采用記錄離子通道電流來間接反映離子通道功能,目前有如下兩種技術:電壓鉗技術(VoltageClamp),膜片鉗(patchclamp)技術。德國多通道膜片鉗實驗操作