隨著技術的發(fā)展,雙光子顯微鏡的性能得到不斷地優(yōu)化,結合它的特點,大致可以分成深和活兩方面的提升。要想讓激發(fā)激光進入更深的層面,大致可從兩個方面入手,裝置優(yōu)化與標本改造。關于裝置優(yōu)化,我們可以把激光束變得更細,使能量更加集中,就能讓激光穿透更深。關于標本,其中影響光傳播的主要是物質(zhì)吸收和散射,解決這個問題,我們需要對樣本進行透明化處理。一種方法是運用某種物質(zhì)將標本浸泡,使其中的物質(zhì)(主要是脂質(zhì))被破壞或溶解。另一種方法是運用電泳將脂質(zhì)電解,讓標本“透明度”提高。雙光子顯微鏡的原理是什么?ultima雙光子顯微鏡光子探測
雙光子顯微鏡的優(yōu)勢:在深度組織中以較長時間對活細胞成像,雙光子顯微鏡是當前之選。雙光子和共聚焦顯微鏡都是通過激光激發(fā)樣品中的熒光標記,使用探測器測量被激發(fā)的熒光。但是,共聚焦一般使用單模光纖耦合激光器,通過單光子激發(fā)熒光,而雙光子使用飛秒激光器,通過幾乎同時吸收兩個長波光子激發(fā)熒光。下面是兩種技術的對比圖。雙光子激發(fā)熒光的主要優(yōu)勢:雙光子比共聚焦使用的更長的波長,所以對組織的損傷更小且穿透更深。共聚焦的成像深度一般為100微米,雙光子則能達到250到500微米,甚至超過1毫米。另外,同時吸收兩個光子意味只有度聚焦點處能被激發(fā),所以不會損傷焦平面之外的組織,并且生成更清晰的圖像。國外ultimainvestigator雙光子顯微鏡代理商雙光子顯微鏡將得到更大的發(fā)展與更廣的應用。
為了驗證動物生物樣品的時間分辨成像能力,本實驗觀察了活海拉細胞高爾基體中的青色熒光蛋白mTFP1,見圖3(a),(c)-(i)。使用的物鏡及尺寸與熒光顆粒成像一致,對比可見v2PE在空間分辨率、激發(fā)深度級圖像對比度較常規(guī)寬場顯微鏡都有所提高。此外,v2PE可以同時激發(fā)多個波長的熒光蛋白,這種技術還可以應用于細胞內(nèi)分子的三維動力學多色成像。在此基礎上,實驗對海拉細胞中的高爾基體(mTFP1)和纖顫蛋白(EGFP)進行了在體成像,見圖3(j)-(n),青色為mTFP1,綠色為EGFP,實驗中兩種熒光蛋白同時成像,終采用光譜分離法將不同蛋白的熒光信號分離出來。
雙光子熒光顯微鏡是結合了激光掃描共聚焦顯微鏡和雙光子激發(fā)技術的一種新技術。雙光子激發(fā)的基本原理是:在高光子密度的情況下,熒光分子可以同時吸收2個長波長的光子,在經(jīng)過一個很短的所謂激發(fā)態(tài)壽命的時間后,發(fā)射出一個波長較短的光子;其效果和使用一個波長為長波長一半的光子去激發(fā)熒光分子是相同的。雙(多)光子成像優(yōu)勢在于,具有更深的組織穿透深度,利用紅外光,能夠在層面檢測極限達1mm的組織區(qū)域;因信號背景比高,而具有更高的對比度;因激發(fā)體積小,具有定點激發(fā)的特性,具有更少的光毒性;激發(fā)波長由紫外、可見光調(diào)整為紅外激發(fā),使其能夠更加安全。雙光子顯微鏡有這么多優(yōu)點,那么雙光子顯微鏡有哪些應用呢?
隨著技術的發(fā)展,雙光子顯微鏡的性能得到不斷地優(yōu)化,結合它的特點,大致可以分成深和活兩個方面的提升。要想讓激發(fā)激光進入更深的層面,大致可從兩個方面入手,裝置優(yōu)化與標本改造。關于裝置優(yōu)化,我們可以把激光束變得更細,使能量更加集中,就能讓激光穿透更深。關于標本,其中影響光傳播的主要是物質(zhì)吸收和散射,解決這個問題,我們需要對樣本進行透明化處理。一種方法是運用某種物質(zhì)將標本浸泡,使其中的物質(zhì)(主要是脂質(zhì))被破壞或溶解。另一種方法是運用電泳將脂質(zhì)電解,讓標本“透明度”提高。雙光子顯微鏡觀察到的現(xiàn)象證明了鈣離子的增加依賴于肌體觸發(fā)的鈉離子作用電勢。國外ultimainvestigator雙光子顯微鏡代理商
雙光子顯微鏡供應商找因斯蔻浦(上海)生物科技有限公司。ultima雙光子顯微鏡光子探測
在高光子密度的情況下,熒光分子可以同時吸收兩個長波長的光子,然后發(fā)射出一個波長較短的光子,其效果和使用一個波長為長波長一半的光子去激發(fā)熒光分子是相同的如煙酰胺腺嘌呤二核苷酸(NADH),在單光子激發(fā)時,在波長為350nm光的激發(fā)下發(fā)出450nm熒光;而在雙光子激發(fā)時,可采用700nm的激發(fā)光得到450nm熒光。由于雙光子激發(fā)需要很高的光子密度,為了不損傷細胞,雙光子顯微鏡使用高能量鎖模脈沖激光器。這種激光器發(fā)出的激光具有很高的峰值能量和很低的平均能量,從而可以減少光漂白和光毒性帶來的不利影響。ultima雙光子顯微鏡光子探測