雙三氟甲烷磺酰亞胺鋰:1.作為鋰電池有機電解質鋰鹽LiN(CF3S02)2作為鋰電解質鋰鹽,水分要小于100ppm,一般在40ppm左右,才可以使用。用作鋰離子電池有機電解質鋰鹽,具有較高的電化學穩定性和電導率。而且在較高的電壓下對鋁集流體沒有腐蝕作用。用EC/DMC配制成lmol/L電解質溶液。電導率可達S/cm。在-30℃下電導率還在10-3S/cm以上。這對于***應用極為重要。2.作反應催化劑LiN(CF3S02)2:和它的同系列化合物MN(RsS02)2(其中,M為1價陽離子,如H+,U+,Na+等;Rf為CF3,C2F5,C3F7,C4F9等全氟烷基),是用于有機催化裂化、加氫裂化、催化重整、異構化、烯烴水合、甲苯歧化、醇類脫水以及酰基化反應等過程的路易斯酸催化劑。3.制備離子液體。 雙三氟甲烷磺酰亞胺鋰消費地區。中國香港加工雙三氟甲烷磺酰亞胺鋰
一是推動醫藥企業智能化發展。引導企業創新發展理念,打造智能制造+綠色制造+共享平臺”新商業模式,構建“共享智能工廠“新生態。二是推動裝備制造**化發展。發展黑土地保護性耕作、秸稈還田收貯、收割機、深松機、整地機等農業機械,以及設施農業、畜禽屠宰等農牧及加工機械,打造農機裝備產業鏈,發展創新平臺,研發**裝備。三是推動化工新材料創新發展。發展氯磺酰氰酸酯鋰電池電解液新材料,推進雙氟磺酰亞胺鋰(LiFSI)及雙三氟甲烷磺酰亞胺鋰(LiTFSI)國產化,提升國際競爭力。四是推動冶金建材業綠色化發展。重視綠色制造,推進產品全生命周期的綠色管理進程,推進金鋼鋼鐵低碳非高爐煉鐵改造,發展綠色低碳冶金建材產業。有名的雙三氟甲烷磺酰亞胺鋰的制備雙三氟甲烷磺酰亞胺鋰的化學成分。
鋰鹽的種類非常多,但考慮到溶解度和穩定性等具體要求能應用于鋰離子電池的鋰鹽種類比較有限,常見的應用于鋰離子電池的鋰鹽種類如表2所示。雙三氟甲基磺酰亞胺鋰(LiTFSI)具有較高的溶解度和高的化學穩定性,同時,具有高的離子電導率和寬的電化學窗口。在20世紀90年代,3M公司率先將此鹽實現了商業化,作為動力電池電解液的功能添加劑使用,具有改善正負極SEI膜,穩定正負極界面,抑制氣體的產生,改善高溫性能和循環性等多種功能。在WIS體系中將LiTFSI作為主體鋰鹽是因為:其在水溶液中有較高的溶解度(>20mol/kg,25°C)和其在水溶液中不水解具有高的化學穩定性。
2020年2月5日,崔屹團隊***報道防火、超輕聚合物-聚合物固態電解質(SSE)。相關論文以“A Fireproof, Lightweight, Polymer–Polymer Solid-State Electrolyte for Safe Lithium Batteries”為題,發表在《Nano Lett.》上。該聚合物固態電解質以多孔聚酰亞胺作為機械增強框架材料,添加阻燃劑(十溴二苯乙烷,DBDPE)和離子導電聚合物電解質(聚環氧乙烷/雙三氟甲烷磺酰基鋰)。聚合物固態電解質由有機材料制成,具有可調節的膜厚度(10–25μm),與傳統的隔膜/液體電解質相比,具有更高的能量密度。PI / DBDPE膜具有熱穩定性、不可燃性和高機械強度,能夠保證Li-Li對稱電池穩定循環300小時不發生短路。制成的LiFePO4/ Li半電池在60°C 下表現出高速率性能(在1 C下為131 mAh g–1)和循環性能(在C/2速率下,300個循環)。值得一提的是,即使在火焰下測試,該聚合物固態電解質制成的軟包電池仍能正常工作。雙三氟甲烷磺酰亞胺鋰的安全信息。
研究了雙三氟甲烷磺酰亞胺陰離子Tf2N分別與5種不同陽離子組成的離子液體對產紫青霉菌(PenicilliumpurpurogenumLi-3)的生長、代謝、細胞膜透性及全細胞催化活性的影響結果表明,[N1,4.4,4]Tf2N對產紫青霉菌的生長有促進作用,[Py14]Tf2N,[Bmim]Tf2N,[BPy]Tf2N和[P6.4.4,4]Tf2N4種離子液體對產紫青霉菌的生長則均有不同程度的抑制。代謝活力保留值R的測定結果表明,[P6.4.4,4]Tf2N和[N14.4.4JTf2N對產紫青霉菌體細胞表現出相對較高的生物相容性;5種離子液體對菌體細胞的細胞膜透性均有改善作用。全細胞催化反應數據顯示比較好離子液體為[Py14]Tf2N,當其加入量為25%,反應84h后,單葡萄糖醛酸基甘草次酸(GAMG)產率高達95.38%。5種離子液體對產紫青霉菌的生長、代謝、細胞膜透性及全細胞催化活性的影響不僅與陰離子Tf2N有關陽離子的組成、結構和性質也發揮重要的作用。硅烷基咪唑雙三氟甲烷磺酰亞胺離子液體氣相色譜固定相的性能評價。無憂雙三氟甲烷磺酰亞胺鋰資費
雙三氟甲烷磺酰亞胺鋰水分:小于100ppm(水分一般在40ppm左右)。中國香港加工雙三氟甲烷磺酰亞胺鋰
隨后研究人員將制備的中性高濃度鋅離子電解質、鋰錳氧(LiMn2O4)正極、Zn負極組裝成完整的紐扣電池,并測試了電池的電化學性能。在0.4C倍率下,電池能量密度可達180 Wh kg–1,經過4000次循環后,電池仍可保持85%的初始容量,庫倫效率近100%;而將該電解質應用于以氧氣為正極的的Zn空氣電池中同樣獲得了優異的性能,即電池能量密度可達300 Wh kg–1,循環次數達200余次。上述結果表明,新型的高濃度中性Zn離子電解質能夠有效地抑制充放電循環中枝晶的形成,從而***改善電池循環穩定性和壽命。而結構表征、譜學研究以及分子動力學綜合研究揭露了該電池性能增強原因來源于高濃度水系電解質中Zn2+的溶劑化-保護層結構,即Zn2+周圍被大量雙三氟甲烷磺酰亞胺陰離子迫包圍,避免其與水分子接觸從而形成離子對(Zn-TFSI)+,有效抑制(Zn-(H2O)6)2+的形成,進而避免化學惰性的氧化鋅枝晶的形成。中國香港加工雙三氟甲烷磺酰亞胺鋰