LiTFSI(雙三氟甲烷磺酰亞酰胺鋰)鋰鹽熱穩定性優異,但通常會腐蝕鋁箔。為解決這一問題,Matsumoto等將LiTFSI鋰鹽濃度提高,配制了1.8mol/LLiTFSIm(EC):m(DEC)=3:7電解液,使用鋁工作電極時其電化學窗口達到了4.5V。通過分析得到由于在高濃度電解液中,鋁箔表面形成一-層氟化鋰LiF鈍化層,成功抑制了鋁箔的腐蝕。Wang等研究了高濃度的LiN(SO2F)2(LiFSA)/碳酸二甲酯(DMC)電解液體系,其可形成三維網絡狀結構,從而在5V電壓條件下有效阻止過渡金屬和鋁的溶解,高電壓石墨C/LiNi0.5Mn1.5O4電池具有優異的循環性能。在10mol/LLiFSI-DMC高濃度電解液中,由于其可形成含氟量較高的界面保護層,在充電電壓達到4.6V時,經過100次循環后,Li/NMC622電池保持了86%的初始放電容量。高濃度電解液具有高的抗氧化還原性,高載流子密度,可抑制鋁箔腐蝕,熱穩定性好等優點,具有應用于高電壓電解液的潛力。然而其也存在不足,如電導率較低、成本較高等,如何提高電導率,降低成本,是推動高濃度電解液實用化進程的關鍵。雙三氟甲烷磺酰亞胺鋰的分子量。生產雙三氟甲烷磺酰亞胺鋰溫度計
隨后研究人員將制備的中性高濃度鋅離子電解質、鋰錳氧(LiMn2O4)正極、Zn負極組裝成完整的紐扣電池,并測試了電池的電化學性能。在0.4C倍率下,電池能量密度可達180 Wh kg–1,經過4000次循環后,電池仍可保持85%的初始容量,庫倫效率近100%;而將該電解質應用于以氧氣為正極的的Zn空氣電池中同樣獲得了優異的性能,即電池能量密度可達300 Wh kg–1,循環次數達200余次。上述結果表明,新型的高濃度中性Zn離子電解質能夠有效地抑制充放電循環中枝晶的形成,從而***改善電池循環穩定性和壽命。而結構表征、譜學研究以及分子動力學綜合研究揭露了該電池性能增強原因來源于高濃度水系電解質中Zn2+的溶劑化-保護層結構,即Zn2+周圍被大量雙三氟甲烷磺酰亞胺陰離子迫包圍,避免其與水分子接觸從而形成離子對(Zn-TFSI)+,有效抑制(Zn-(H2O)6)2+的形成,進而避免化學惰性的氧化鋅枝晶的形成。江蘇技術雙三氟甲烷磺酰亞胺鋰雙三氟甲烷磺酰亞胺鋰消費地區。
PDES-CPE的制備過程示意圖。將四種固體粉末:丁二腈(SN)、雙三氟甲烷磺酰亞胺鋰(LiTFSI)、二氟草酸硼酸鋰(LiDFOB)和一種合成的單體甲基丙烯酸(2-(((2-氧代-1,3-二氧戊烷基-4-基)甲氧基)甲酰胺基))-乙酯(CUMA)均勻混合得到熔融的前驅體,加入具有正極、負極、隔膜的電池中,在60 ℃充分聚合得到含有PDES-CPE的電池。通過截面掃描電鏡圖和能譜圖看出,正極和電解質呈現出緊密的接觸,原位聚合的電解質可以均勻滲透到工業水平的正極(70 μm,26 mg/cm2)中,有益于界面阻抗的降低和界面的離子傳輸。根據PDES-CPE聚合前后的1H核磁共振譜,通過聚合后的單體和殘余單體所對應的峰的積分面積計算,得出PDES-CPE的聚合轉化率高達99.8 %(圖1c)。CUMA中的甲基丙烯酸酯結構在聚合時具有快速的鏈增長動力學性能,且其聚合物自由基中間體與SN或鋰鹽之間的鏈轉移反應較少;另外,CUMA較短的鏈長使得其在鏈增長過程中反應活化能較低,決定了PDES-CPE的高聚合轉化率。
據外媒報道,巴西圣保羅大學化學研究所(the University of S?o Paulo's Chemistry Institute,IQ-USP)的研究人員發現,可以用高濃度的含水電解液,即水溶鹽電解液,替代汽車電池和其他電化學裝置中的有機溶劑,而且此類電解液具有成本低、無毒性等優勢。研究人員表示:“水溶鹽電解液指的是極少量的水加高濃度的鹽組成的溶液,水的量剛好能夠溶解離子,促成溶劑的形成。與傳統解決方案不同,該系統不含游離水?!贝送猓挥杏梢粋€大的陰離子與一個小的陽離子組成的鹽分子才可被溶解。例如,雙三氟甲烷磺酰亞胺鋰(CF3SO2NLiSO2CF3)、氯化鈉或食鹽都沒有用,因為它們的陽離子和陰離子大小相似。由于此種高濃度的溶液中沒有游離水,電解水分解成氫和氧就會變得更加困難,因此,盡管該系統不含水,該溶液的電化學穩定性仍然很高。綜上所述,此種基于高濃度水溶鹽溶液的創新技術比將鹽溶解于有機化合物的傳統技術更具明顯優勢,不過,水溶鹽電解液技術的應用也面臨著挑戰。雙三氟甲烷磺酰亞胺鋰作為六氟磷酸鋰的升級產品。
研究了雙三氟甲烷磺酰亞胺陰離子Tf2N分別與5種不同陽離子組成的離子液體對產紫青霉菌(PenicilliumpurpurogenumLi-3)的生長、代謝、細胞膜透性及全細胞催化活性的影響結果表明,[N1,4.4,4]Tf2N對產紫青霉菌的生長有促進作用,[Py14]Tf2N,[Bmim]Tf2N,[BPy]Tf2N和[P6.4.4,4]Tf2N4種離子液體對產紫青霉菌的生長則均有不同程度的抑制。代謝活力保留值R的測定結果表明,[P6.4.4,4]Tf2N和[N14.4.4JTf2N對產紫青霉菌體細胞表現出相對較高的生物相容性;5種離子液體對菌體細胞的細胞膜透性均有改善作用。全細胞催化反應數據顯示比較好離子液體為[Py14]Tf2N,當其加入量為25%,反應84h后,單葡萄糖醛酸基甘草次酸(GAMG)產率高達95.38%。5種離子液體對產紫青霉菌的生長、代謝、細胞膜透性及全細胞催化活性的影響不僅與陰離子Tf2N有關陽離子的組成、結構和性質也發揮重要的作用。雙三氟甲烷磺酰亞胺鋰水分:小于100ppm(水分一般在40ppm左右)。山西雙三氟甲烷磺酰亞胺鋰近期價格
雙三氟甲烷磺酰亞胺類離子液體對產紫青霉菌株全細胞催化特性的影響。生產雙三氟甲烷磺酰亞胺鋰溫度計
基于此,斯坦福大學戴宏杰教授團隊提出了一種用于鋰金屬電池的新型離子液體電解質。該電解液的粘度相較于之前用于鋰金屬電池的離子液體更低,其組分包括1-乙基-3-甲基咪唑雙氟磺酸亞胺([EMIm]FSI與5 M雙氟磺酰亞胺鋰(LiFSI)及0.16 M雙三氟甲烷磺酰亞胺鈉(NaTFSI)添加劑(在本文中為了方便將該電解質命名為“EM-5Li-Na”IL電解液)。采用該電解液的Li/Li對稱電池可實現1200 h穩定、可逆的Li沉積/溶解循環,Li-Cu電池可實現鋰沉積CE≈99%。當鋰金屬與高容量NCM 811陰極匹配時可分別提供比較大比容量(≈199 mAh g-1)和≈765Wh kg-1的能量密度。即使在高LiCoO2載量(如12 mg cm?2)的情況下,Li-LiCoO2電池在0.7 C充放電率下經過1200次循環后,其容量保持率仍高達81%(相較于初始容量)。這一結果使得具有高安全性,高能量密度和長循環穩定性的鋰金屬電池具有實用化前景。該研究成果以“High-Safety and High-Energy-Density Lithium Metal Batteries in a Novel Ionic-Liquid Electrolyte”為題發表在國際前列期刊Advanced Materials上。生產雙三氟甲烷磺酰亞胺鋰溫度計