LiTFSI(雙三氟甲烷磺酰亞酰胺鋰)鋰鹽熱穩定性優異,但通常會腐蝕鋁箔。為解決這一問題,Matsumoto等將LiTFSI鋰鹽濃度提高,配制了1.8mol/LLiTFSIm(EC)∶m(DEC)=3:7電解液,使用鋁工作電極時其電化學窗口達到了4.5V。通過分析得到由于在高濃度電解液中,鋁箔表面形成一層氟化鋰LiF鈍化層,成功抑制了鋁箔的腐蝕。Wang等研究了高濃度的LiN(SO2F)2(LiFSA)/碳酸二甲酯(DMC)電解液體系,其可形成三維網絡狀結構,從而在5V電壓條件下有效阻止過渡金屬和鋁的溶解,高電壓石墨C/LiNi0.5Mn1.5O4電池具有優異的循環性能。在10mol/LLiFSI-DMC高濃度電解液中,由于其可形成含氟量較高的界面保護層,在充電電壓達到4.6V時,經過100次循環后,Li/NMC622電池保持了86%的初始放電容量。高濃度電解液具有高的抗氧化還原性,高載流子密度,可抑制鋁箔腐蝕,熱穩定性好等優點,具有應用于高電壓電解液的潛力。然而其也存在不足,如電導率較低、成本較高等,如何提高電導率,降低成本,是推動高濃度電解液實用化進程的關鍵。雙三氟甲烷磺酰亞胺鋰水分:小于100ppm(水分一般在40ppm左右)。加工雙三氟甲烷磺酰亞胺鋰價格大全
LiTFSI(雙三氟甲烷磺酰亞酰胺鋰)鋰鹽熱穩定性優異,但通常會腐蝕鋁箔。為解決這一問題,Matsumoto等將LiTFSI鋰鹽濃度提高,配制了1.8mol/LLiTFSIm(EC):m(DEC)=3:7電解液,使用鋁工作電極時其電化學窗口達到了4.5V。通過分析得到由于在高濃度電解液中,鋁箔表面形成一-層氟化鋰LiF鈍化層,成功抑制了鋁箔的腐蝕。Wang等研究了高濃度的LiN(SO2F)2(LiFSA)/碳酸二甲酯(DMC)電解液體系,其可形成三維網絡狀結構,從而在5V電壓條件下有效阻止過渡金屬和鋁的溶解,高電壓石墨C/LiNi0.5Mn1.5O4電池具有優異的循環性能。在10mol/LLiFSI-DMC高濃度電解液中,由于其可形成含氟量較高的界面保護層,在充電電壓達到4.6V時,經過100次循環后,Li/NMC622電池保持了86%的初始放電容量。高濃度電解液具有高的抗氧化還原性,高載流子密度,可抑制鋁箔腐蝕,熱穩定性好等優點,具有應用于高電壓電解液的潛力。然而其也存在不足,如電導率較低、成本較高等,如何提高電導率,降低成本,是推動高濃度電解液實用化進程的關鍵。雙三氟甲烷磺酰亞胺鋰標準雙三氟甲烷磺酰亞胺鋰產品介紹。
PDES-CPE的制備過程示意圖。將四種固體粉末:丁二腈(SN)、雙三氟甲烷磺酰亞胺鋰(LiTFSI)、二氟草酸硼酸鋰(LiDFOB)和一種合成的單體甲基丙烯酸(2-(((2-氧代-1,3-二氧戊烷基-4-基)甲氧基)甲酰胺基))-乙酯(CUMA)均勻混合得到熔融的前驅體,加入具有正極、負極、隔膜的電池中,在60 ℃充分聚合得到含有PDES-CPE的電池。通過截面掃描電鏡圖和能譜圖看出,正極和電解質呈現出緊密的接觸,原位聚合的電解質可以均勻滲透到工業水平的正極(70 μm,26 mg/cm2)中,有益于界面阻抗的降低和界面的離子傳輸。根據PDES-CPE聚合前后的1H核磁共振譜,通過聚合后的單體和殘余單體所對應的峰的積分面積計算,得出PDES-CPE的聚合轉化率高達99.8 %(圖1c)。CUMA中的甲基丙烯酸酯結構在聚合時具有快速的鏈增長動力學性能,且其聚合物自由基中間體與SN或鋰鹽之間的鏈轉移反應較少;另外,CUMA較短的鏈長使得其在鏈增長過程中反應活化能較低,決定了PDES-CPE的高聚合轉化率。
由來自美國馬里蘭大學王春生教授和美國陸軍研究實驗室徐康博士兩位華人學者領導的研究小組嘗試了新的思路。他們將一種鋰的離子化合物——雙三氟甲烷磺酰亞胺鋰以極高的濃度溶于水,得到了一種獨特的“鹽水”。由于溶液中鋰鹽的體積和質量分數都高于水,這種“鹽水”實際上應該視為水溶于鋰鹽中形成的溶液。這種溶液的導電能力與常規有機溶劑電解質相當,而可燃性要**低于后者。在電池使用過程中,溶液中的鋰鹽會先于水發生電解,電解產物會沉積在電極上形成保護層,防止水的電解的發生,而導電能力不會受到影響。類似的保護層在使用非水電解質的電池中很常見,但因為基于水溶液的電解質電解產物是氫氣和氧氣,通常很難形成固態保護層,而這項新的研究巧妙地解決了這個問題。雙三氟甲烷磺酰亞胺鋰熔點: 234-238℃。
1994年,Dahn等報道了***個水系鋰離子電池,該體系分別使用LiMn2O4和VO2作為正、負極,以5 mol/L LiNO3和0.001 mol/L LiOH作為電解液,在1.5 V的平均電壓下循環100次后容量保持率達到80%。然而,水的電化學窗口較窄,限制了電極材料的選擇范圍,導致了傳統水系鋰離子電池的能量密度很低。為了進一步提高能量密度,2015年,王春生等報道了寬電位“water in salt”電解液,負極側雙三氟甲基磺酰亞胺(TFSI)的還原導致的鈍化作用和正極側Li+的溶劑化以及TFSI離子的作用,使電化學窗口擴大至3 V,如圖5所示。使用該電解液組裝了2.3 V的水系鋰離子電池并循環了1000多次,無論在較低(0.15 C)、還是較高(4.5 C)倍率下放電和充電庫侖效率均接近100%。在此研究基礎上,該課題組又使用三(三甲基甲硅烷基)硼酸酯(TMSB)作為添加劑,通過TMSB的電化學氧化形成陰極電解質界面(CEI),使LiCoO2在更高的截止電壓下穩定充電/放電,并具有170 mA·h/g的高容量。當與Mo6S8陽極配對時電壓為2.5 V,能量密度達到120 W·h/kg(1000個循環),每循環0.013%的極低容量衰減率。隨后,又有更寬電位的“water in bisalt”電解液被報道,拓寬了電極材料選擇的范圍。雙三氟甲烷磺酰亞胺鋰用于通過對應的三氟甲基磺酸鹽的陰離子置換反應制備手性咪唑鎓鹽。高純雙三氟甲烷磺酰亞胺鋰批發價格
雙三氟甲烷磺酰亞胺鋰的化學成分。加工雙三氟甲烷磺酰亞胺鋰價格大全
尖晶石型錳酸鋰(LiMn2O4)正極作為一種主流的水系鋰電池正極材料被***用于水系鋰離子電池,研究表明其電化學性能高度依賴于錳酸鋰材料自身化學組分、顆粒尺寸、晶體結構和形貌等材料屬性。本文針對性選取了LiMn2O4、鋁摻雜LiAlxMn2-xO4、富鋰Li1+xMn2-xO4三種典型的尖晶石型LiMn2O4,通過一系列分析、表征手段研究循環前后其晶體結構、材料形貌以及化學組分的變化,探究在高鹽濃度Water-in-salt (WIS)水系電解液(21 mol/kg的雙三氟甲烷磺酰亞胺鋰(LiTFSI)溶液)中三種材料電化學性能不同的原因。研究發現充放電時未經處理的尖晶石LiMn2O4因為嚴重的Mn溶解和Jahn-Teller效應產生了不可逆的相變和形貌變化,容量衰減嚴重,循環性能差;鋁摻雜一定程度上抑制了尖晶石錳酸鋰的Jahn-Teller效應,但不能完全解決Mn溶解和晶格畸變問題,也存在較嚴重的容量衰減;富鋰Li1+xMn2-xO4可以有效抑制尖晶石錳酸鋰在水系電解液中的Mn溶解和Jahn-Teller畸變,晶體結構穩定,綜合電化學性能好,適合用于水系鋰離子電池,提高其整體電化學性能。加工雙三氟甲烷磺酰亞胺鋰價格大全