電化學分析以其靈敏度高和便捷準確而成為分析檢測領域的研究熱點之一。本論文制備了還原氧化石墨烯修飾的玻碳電極、平面參比電極和納米普魯士藍、氧化石墨烯及雙三氟甲烷磺酰亞胺鋰修飾的絲網(wǎng)印刷電極。采用交流阻抗法及微分脈沖伏安法對不同氧化程度的植物油進行了測量并與國標比色法進行對比,結(jié)果表明所建立的電化學方法能夠方便準確地對植物油的氧化程度進行檢測。主要研究內(nèi)容及結(jié)果如下:1、還原氧化石墨烯修飾玻碳電極的制備及其在水相介質(zhì)中測量植物油氧化誘導時間制備了氧化石墨烯及rGO/GCE,并研究了rGO膜層厚度對電極性能的影響。結(jié)果表明,循環(huán)伏安掃描50圈得到的rGO/GCE性能比較好。接著建立了植物油氧化誘導時間的水相介質(zhì)測量體系包含油水混合系統(tǒng)、油水分離系統(tǒng)和測量系統(tǒng)。并對水相介質(zhì)、油水體積比、油水混合程度對測量的影響進行了研究。結(jié)果表明,在油水體積比為1:1、銅絲長度為40cm及pH為7.0的磷酸緩沖液的水相介質(zhì)中測量靈敏度較高。多氟芳香環(huán)與雙三氟甲烷磺酰亞胺鋰進行混合形成呈近晶相的液晶電解質(zhì)。中國澳門雙三氟甲烷磺酰亞胺鋰
離子液體由陰、陽離子兩部分組成, 陰離子通常有、、TFSI-、FSI-等,陽離子通常有吡咯類、咪唑類、哌啶類和季銨鹽類等。離子液體具有揮發(fā)性極小、不燃、電化學穩(wěn)定窗口寬、溶解能力強、熱穩(wěn)定性高等特點,既適合應用于高電壓電解液,又適合制備阻燃型電解液,提高鋰離子電池安全性。盡管如此, 由于純離子液體黏度大,且與隔膜、電極材料的浸潤性差,鋰離子的遷移受到極大限制;另外,大多數(shù)的離子液體與碳基負極的兼容性差,因而,純離子液體較難作 為電解液直接用于鋰離子電池。實際上,離子液體通常與碳酸酯類、砜類或氟代醚類等溶劑混合使用來制備阻燃型高性能電解液。與碳酸酯混合使用配制阻燃型電解液的吡咯類離子液體有PYR14TFSI 或BMP-TFSI、N-丙基-N-甲基吡咯-二(三氟甲基磺酰)亞胺、N-乙基-2-甲氧基吡咯-雙氟磺酰亞胺。KIM等報道與碳酸酯溶劑混合后電解液阻燃效果優(yōu)異,且能保證LiFePO4/Li體系60 ℃高溫的穩(wěn)定運行。與碳酸酯混合的代表性哌啶類離子液體有N-甲基-N-丙基哌啶-二(三氟甲基磺酰)亞胺、1-乙基-1-甲基哌啶-二(三氟甲基磺酰)亞胺。品質(zhì)雙三氟甲烷磺酰亞胺鋰標準雙三氟甲烷磺酰亞胺鋰作為六氟磷酸鋰的升級產(chǎn)品。
目前商用鋰離子電池通常圍繞有機電解液構(gòu)建,但是由于有機體系本征的高揮發(fā)性、易燃等特性使得其存在高加工成本、低安全、非環(huán)境友好等問題。近年來,水系電池采用更溫和的水作為溶劑**增加了電池器件加工便利性,安全性,然而受限于水的低電化學窗口(1.23V),水系鋰電能量密度不足以與目前有機體系抗衡, 2015年 “water in salt”概念指出通過高鹽濃度可以大幅度提升水系電解液的電化學窗口,從而實現(xiàn)了更高能量密度的水系鋰離子電池器件。“water in salt”電解質(zhì)指的是濃度為 21 M(mol/kg)的 LiTFSI (雙三氟甲烷磺酰亞胺鋰) 水溶液,即溶質(zhì) LiTFSI 和溶劑水的質(zhì)量比/體積比都遠大于1,從而得名 water-in-salt(鹽包水)?!皐ater in salt”電解液除了帶給水系電池更好的電化學性能之外,其背后還存在一系列不同于有機體系的界面化學或離子傳導機制,這些特殊性質(zhì)值得進一步挖掘。尤其是在高粘度下其還能保持如此高的電導率,溶劑水對離子傳輸?shù)拇龠M作用尚未明確。
斯坦福大學崔屹教授課題組設計了一種防火、超輕的固態(tài)聚合物電解質(zhì)(SSE)以提高鋰電池的安全性。該聚合物固態(tài)電解質(zhì)以多孔聚酰亞胺(PI)作為機械增強框架材料,添加阻燃劑(十溴二苯乙烷,DBDPE)和離子導電聚合物電解質(zhì)(聚環(huán)氧乙烷/雙三氟甲烷磺酰基鋰,PEO/LiTFSI)。聚合物固態(tài)電解質(zhì)由輕質(zhì)有機材料制成,具有可調(diào)節(jié)的膜厚度(10–25 μm),與傳統(tǒng)的隔膜/液體電解質(zhì)相比,具有更高的能量密度。該聚合物框架PI/DBDPE具有良好的熱穩(wěn)定性,在350 ℃時也沒有觀察到化學成分與形貌的變化。多孔PI/DBDPE膜的楊氏模量為440 MPa,比PEO/LiTFSI膜的楊氏模量(0.1 MPa)高出近4個數(shù)量級,證明了其具有優(yōu)異的機械強度。添加了離子導體PEO/LiTFSI之后,整個電解質(zhì)表現(xiàn)出了非常好的防火性能。制成的Li/Li 對稱電池循環(huán)了300小時不短路,LiFePO4/ Li半電池在60 °C下表現(xiàn)出高速率性能(在1 C下為131 mAh g-1)和循環(huán)性能(在C/2速率下300個循環(huán))。此外,該固態(tài)聚合物電解質(zhì)制成的軟包電池在火焰測試下仍然可以工作,體現(xiàn)出優(yōu)異的耐高溫特性。雙三氟甲磺酰亞胺鋰產(chǎn)品的國產(chǎn)化。
以雙三氟甲烷磺酰亞胺離子([NTf2]-)為陰離子,臺成陽離子烷基取代不同(C1、C2和C4)的硅烷基咪唑離子液體,以其為固定相制備氣相色譜填充柱。硅烷基咪唑離子液體為強極性固定相;陽離子結(jié)構(gòu)影響固定相的熱穩(wěn)定性、極性和分離性能。在這些離子液體固定相中,1-丁基-3-[(3-三甲氧基硅基)-丙基]咪唑雙三氟甲烷磺酰亞胺([PBIM]NTf2)對Grob試劑分離性能較好。利用溶劑化作用參數(shù)模型,評價[PBIM]NTf2固定相特性,研究固定相-組分分子之間相互作用機制;同時考察[PBIM]NTf2色譜柱對不同類型化合物的分離性能。結(jié)果表明,[PBIM]NTf2固定相主要作用力是氫鍵堿性和偶極作用,對烷烴、醇、酯和胺等不同類型的樣品組分表現(xiàn)出良好的分離能力。雙三氟甲基磺酰亞胺鋰具有高的離子電導率和寬的電化學窗口。江蘇有名的雙三氟甲烷磺酰亞胺鋰
雙三氟甲烷磺酰亞胺鋰水分:小于100ppm(水分一般在40ppm左右)。中國澳門雙三氟甲烷磺酰亞胺鋰
吉林大學孫俊奇教授研究小組報道了一種具有自修復性能和高離子導電率的柔性固態(tài)凝膠電解質(zhì)。該凝膠電解質(zhì)由含有2-脲基-4[H]啶酮(UPy)基團的聚離子液體,咪唑類離子液體和鋰鹽(雙三氟甲烷磺酰亞胺鋰)的**溶液經(jīng)溶劑揮發(fā)和熱壓的方法制備而成。其中,UPy基團間的四重氫鍵將聚離子液體交聯(lián)從而形成了穩(wěn)定的聚離子液體網(wǎng)絡。同時,由于聚離子液體和離子液體的相容性和靜電相互作用,上述聚離子液體網(wǎng)絡可以負載大量的離子液體(離子液體為聚離子液體質(zhì)量的3.5倍)從而形成了固態(tài)的離子液體凝膠(Ionogel)電解質(zhì)。該凝膠電解質(zhì)的離子導電率高達1.41×10-3S/cm,同時表現(xiàn)出良好的柔性、彈性和優(yōu)異的不可燃燒性質(zhì)。基于該凝膠電解質(zhì)組裝的Li|Ionogel|LiFePO4電池表現(xiàn)出了良好的充放電循環(huán)性能,該電池在0.2C倍率下循環(huán)120周期后的放電容量和庫倫效率分別為147.5mAh g-1和99.7%,上述性能均優(yōu)于同等條件下以離子液體或傳統(tǒng)的液態(tài)電解液作為電解質(zhì)所組裝的電池。中國澳門雙三氟甲烷磺酰亞胺鋰