LiTFSI作為新型非水性鋰鹽,具有高的熱穩定性,陰陽離子的締合度小,在碳酸酯體系具有高的溶解度和解離度。在低溫情況下,LiFSI體系電解液較高的電導率和較低的電荷轉移阻抗保證了其低溫性能。Mandal等人采用LiTFSI作為鋰鹽,EC/DMC/EMC/pC(質量比15:37:38:10)為基礎溶劑,所得電解液在-40°C下仍具有2mScm-1的高電導率。因而,LiTFSI被視為是**有前途的,能夠取代六氟磷酸鋰的電解質,也被視為是過渡到固態電解質時代的選擇之一。根據維基百科的觀點,LiTFSI雙(三氟甲磺酰基)酰亞氨鋰又稱雙(三氟甲烷磺酰)亞胺鋰,是一種弱配位陰離子的鋰鹽,化學式為LiC2F5NO5S2,可用作復合聚合物的親水性電解質材料。該化合物可由雙(三氟甲基磺酰)亞胺和氫氧化鋰或碳酸鋰在水溶液中反應得到,無水物通過110°C真空干燥獲得:LiOH+HNTf2→LiNTf2+H2O雙三氟甲烷磺酰亞胺鋰的物性數據。河北口碑好的雙三氟甲烷磺酰亞胺鋰
Borgel等研究了鎳錳酸鋰半電池(Li/LiNi0.5Mn1.5O4)在TFSI(雙三氟甲烷磺酰亞胺)基離子液體中的性能,相比于常規電解液,電池不可逆容量**降低。但將這些離子液體應用在高倍率和低溫環境時,其性能還需要進一步的優化。1mol/LLiNTf2-C4mpyrNTf2(雙三氟甲烷磺酰亞胺鋰/1-丁基-1-甲基吡咯烷鎓雙三氟甲磺酰亞胺)電解液用于Li/LiNi0.5Mn1.5O4電池,與電解液[1mol/LLiPF6j(EC)∶j(DEC)=1∶2]相比,電池放電容量相當,但庫侖效率有明顯的提高,且離子液體的阻燃性、安全性較優。不足的地方是使用該離子液體后電池庫侖效率*約95%,容量衰減較快,因此庫侖效率還需提高,真正實現高效率、高容量保持率。為改善其不足,可將離子液體與常規溶劑作為共溶劑,提升鋰離子電池在高電壓下的性能。雖然離子液體可應用在高電壓鋰離子電池,但是其高的黏度、低的電導率導致電池循環和倍率性能降低;其次,其浸潤性不好,致使與電極的相容性也較差;再者,離子液體熔點高,使得在低溫下的性能下降。離子液體真正實現應用化還需更多的研究。新型雙三氟甲烷磺酰亞胺鋰應用雙三氟甲烷磺酰亞胺鋰的貯存方法。
中國科學院金屬研究所李峰研究員和孫振華研究員等,將原位固化的策略引入到鋰硫電池中,在電解液中加入2, 5-二氯-1, 4-苯醌(DCBQ),使得鋰硫電池電化學反應過程中生成的多硫離子可以與DCBQ發生親核取代反應,原位地生成不易溶于醚類電解液的固相有機硫聚合物,從而實現抑制穿梭效應的目的。通過實驗表征和理論計算結合,發現有機硫聚合物中的多硫化物可以被共價鍵合作用限制,該固態的有機硫聚合物能夠阻止后續多硫化物的遷移,使活性物質保持在正極中,增加了循環穩定性和活性物質利用率。DCBQ上的醌羰基官能團可以加快鋰離子的遷移速率,促進電化學反應的動力學過程,提升電池的倍率性能。在電解液中添加了DCBQ的鋰硫電池,在2C電流密度下放電比容量高達622 mAh g-1,是不含添加劑的電池容量的3.5倍,在1 C倍率下充放電循環100圈,電池容量保持率為92%。鋰硫電池的醚類電解液中(1 M雙三氟甲烷磺酰亞胺鋰(LiTFSI),0.2 M硝酸鋰,溶解于1,3二氧戊環(DOL)和乙二醇二甲醚(DME)的體積比為1:1的混合溶液)添加DCBQ,在***放電產生多硫化物時,DCBQ上的氯可與多硫離子的孤對電子產生作用,發生取代反應進而縮聚生成固相的有機硫聚合物。
如今,鋰離子電池被認為是**有前途的大中型能源儲能系統之一,然而鋰離子電池仍然存在一些缺點,比如功率密度有限,成本高,安全性差等。其中安全問題對于大規模應用是非常重要的,其主要是由電解液和隔膜的熱穩定性引起的。商業電解液鋰鹽一六氟磷酸鋰,在60°C以上會與水反應熱分解,因此商業鋰離子電池通常***于低于60°C溫度下使用,并且電池組裝時嚴格要求無水條件。雖然有--些其他的鋰鹽,例如,四氟硼酸鋰,雙乙=酸硼酸鋰和雙三氟甲烷磺酰亞胺鋰(LiTFSI)等也得到了***的應用,但均不是LiPF6可行的替代品。傳統電解質的組成是將鋰鹽溶解在溶劑中,鋰離子濃度梯度嚴重,特別是在高充放電速率下。這是由于PF6-的遷移速高于Lit,**終限制了功率的傳輸并且造成鋰枝晶的生長,后者會導致嚴重的安全問題。另外,現如今廣泛應用的多孔聚烯烴隔膜如聚丙烯(PP)和聚2烯(PE)等,當溫度升高(>100-150°C)時存在熱尺寸收縮,引入額外的安全問題。這樣的收縮暴露兩個電極直接接觸,如果電池過熱,可能導致電池內部短路,加速火災的發生甚至。在功率性能方面,采用了非極性聚烯烴隔膜與極性有機溶劑的相容性差。雙三氟甲烷磺酰亞胺鋰水分:小于100ppm(水分一般在40ppm左右)。
中科院物理研究所李泓和禹習謙研究員等人采用原位微分電化學質譜(DEMS)來研究LiCoO2|PEO-LiTFSI|Li電池中的產氣行為。通過實驗和理論計算表明,LiCoO2的表面催化作用是PEO在4.2 V意外析出H2氣體的根本原因。使用穩定的固態電解質Li1.4Al0.4Ti1.6(PO4)3(LATP)對LiCoO2表面進行包覆可以減輕這種表面催化作用,并將電池工作電壓擴展到4.5 V以上。同時還解釋了產氣的原因:雙三氟甲烷磺酰亞胺(HTFSI)在正極側因被氧化脫水而產生,并在負極極側與金屬鋰反應導致了氫氣的析出。相關研究成果以“Increasing Poly(ethyleneoxide) Stability to 4.5 V by Surface Coating of the Cathode”為題發表在ACS Energy Letters上。雙三氟甲烷磺酰亞胺鋰的主要運輸方式。四川雙三氟甲烷磺酰亞胺鋰均價
雙三氟甲烷磺酰亞胺鋰穩定性。河北口碑好的雙三氟甲烷磺酰亞胺鋰
在高濃度電解液環境中,電極/電解液界面膜組成主要源于鋰鹽陰離子的氧化或還原分解,生成氟化鋰(LiF),而富含LiF的界面膜相對穩定,從而可以有效減少界面發生的副反應。如在石墨負極表面,少許溶劑還原后形成不溶性的SEI組分,如Li2CO3和部分可溶的半碳酸鹽和聚合物,鋰鹽陰離子還原的產物是典型的無機化合物,如LiF和Li2O,它們沉淀在電極表面形成-層無機-有機復合膜。該界面膜薄而致密,具有較強的機械穩定性,從而進一步改善電化學性能。且陰離子的結構也能影響界面的化學組成。Wang等研究表明在氟磺酰亞胺鋰-雙三氟甲烷磺酰亞胺鋰(LiFSI+LiTFSI)中,SEI膜中LiF含量隨LiFSI濃度增大而增加,這表明FSI-陰離子優先于TFSI在石墨負極表面發生分解,產生富含LiF和更穩定的SEI膜,從而進一步穩定電極/電解液的界面,提升庫侖效率和循環穩定性。河北口碑好的雙三氟甲烷磺酰亞胺鋰
上海域倫實業有限公司致力于化工,是一家生產型的公司。公司自成立以來,以質量為發展,讓匠心彌散在每個細節,公司旗下碳酸鋰,氫氧化鋰,硫酸鋰,氟化鋰深受客戶的喜愛。公司注重以質量為中心,以服務為理念,秉持誠信為本的理念,打造化工良好品牌。域倫秉承“客戶為尊、服務為榮、創意為先、技術為實”的經營理念,全力打造公司的重點競爭力。