目前商業上**成功的鋰鹽是LiPF6,因為它均衡了各項性能,如良好的解離度、溶解性、離子電導率以及能夠鈍化鋁箔等。但它在痕量水存在的情況下會與水反應生成HF侵蝕正極,此外它在80 ℃即發生分解。LiPF6較差的化學穩定性和熱穩定性限制了其在高電壓三元鋰離子電池中的應用,故對于新的替代鋰鹽的尋找從未停止。其中被深入研究的有雙草酸硼酸鋰(LiBOB),二氟草酸硼酸鋰(LiDFOB),雙氟磺酰亞胺鋰(LiFSI)及雙三氟甲烷磺酰亞胺鋰(LiTFSI)等。但在實際應用中,除了成本限制,這些鋰鹽都有各自的局限性,如LiBOB和LiDFOB較差的溶解性,LiFSI和LiTFSI較差的純度和在高壓下(4.0 V,vs. Li+/Li)對鋁箔嚴重腐蝕等等,所以一般作為添加劑(第4部分介紹)或將幾種鹽混合使用。雙三氟甲烷磺酰亞胺鋰的分子式。山西雙三氟甲烷磺酰亞胺鋰
電池中的硫正極與電解液直接接觸,因此在循環過程中會形成多硫化物,并誘導多硫化物溶解和穿梭。在鋰為負極、雙三氟甲烷磺酰亞胺鋰(LiTFSI)為溶質的電池中,研究了高濃度、常規和稀釋電解液對電池性能的影響。充放電曲線為典型的鋰硫電池曲線,電壓平臺較短,對應Sg→Li2S4的轉變;低電壓的平臺較長,對應Li2S4-→Li2S的轉變。在標準的1M電解液中C/10的倍率,硫正極可表現出1265mAh.g-1的比容量、第二個放電平臺電壓約為2.1V(電壓遲滯~0.15V)。但當倍率增加到2C時,放電容量降為650mAh.g-1(為初始容量的50%),放電平臺降為1.8V(電壓遲滯~0.65V),說明存在溶解/穿梭效應從而導致鋰硫電池中倍率性能受限。電解液濃度增加時,高倍率下容量***降低,電壓滯后明顯增加。高濃度電解液1C-2C倍率下,幾乎無法區分出兩個放電平臺,說明高濃度電解液中反應動力學較差。當電解液濃度為1M和2M時,200次循環后均出現明顯的容量衰減(~65%),即第200圈充放電*能釋放~600mAhg-1的容量。在0.1M的電解液中,電池表現出了優異的電化學性質,循環200個周期后的容量保持率為~95%,說明稀釋電解液后的鋰硫電池中多硫化物穿梭、負極表面不可逆的Li2S沉積和電阻的增長均變小。新型雙三氟甲烷磺酰亞胺鋰價格合理雙三氟甲烷磺酰亞胺鋰產品規格、參數。
斯坦福大學崔屹教授課題組設計了一種防火、超輕的固態聚合物電解質(SSE)以提高鋰電池的安全性。該聚合物固態電解質以多孔聚酰亞胺(PI)作為機械增強框架材料,添加阻燃劑(十溴二苯乙烷,DBDPE)和離子導電聚合物電解質(聚環氧乙烷/雙三氟甲烷磺酰基鋰,PEO/LiTFSI)。聚合物固態電解質由輕質有機材料制成,具有可調節的膜厚度(10–25 μm),與傳統的隔膜/液體電解質相比,具有更高的能量密度。該聚合物框架PI/DBDPE具有良好的熱穩定性,在350 ℃時也沒有觀察到化學成分與形貌的變化。多孔PI/DBDPE膜的楊氏模量為440 MPa,比PEO/LiTFSI膜的楊氏模量(0.1 MPa)高出近4個數量級,證明了其具有優異的機械強度。添加了離子導體PEO/LiTFSI之后,整個電解質表現出了非常好的防火性能。制成的Li/Li 對稱電池循環了300小時不短路,LiFePO4/ Li半電池在60 °C下表現出高速率性能(在1 C下為131 mAh g-1)和循環性能(在C/2速率下300個循環)。此外,該固態聚合物電解質制成的軟包電池在火焰測試下仍然可以工作,體現出優異的耐高溫特性。
鋰鹽的種類非常多,但考慮到溶解度和穩定性等具體要求能應用于鋰離子電池的鋰鹽種類比較有限,常見的應用于鋰離子電池的鋰鹽種類如表2所示。雙三氟甲基磺酰亞胺鋰(LiTFSI)具有較高的溶解度和高的化學穩定性,同時,具有高的離子電導率和寬的電化學窗口。在20世紀90年代,3M公司率先將此鹽實現了商業化,作為動力電池電解液的功能添加劑使用,具有改善正負極SEI膜,穩定正負極界面,抑制氣體的產生,改善高溫性能和循環性等多種功能。在WIS體系中將LiTFSI作為主體鋰鹽是因為:其在水溶液中有較高的溶解度(>20mol/kg,25°C)和其在水溶液中不水解具有高的化學穩定性。雙三氟甲烷磺酰亞胺類離子液體對產紫青霉菌株全細胞催化特性的影響。
雙三氟甲烷磺酰亞胺鋰:1.作為鋰電池有機電解質鋰鹽LiN(CF3S02)2作為鋰電解質鋰鹽,水分要小于100ppm,一般在40ppm左右,才可以使用。用作鋰離子電池有機電解質鋰鹽,具有較高的電化學穩定性和電導率。而且在較高的電壓下對鋁集流體沒有腐蝕作用。用EC/DMC配制成lmol/L電解質溶液。電導率可達S/cm。在-30℃下電導率還在10-3S/cm以上。這對于***應用極為重要。2.作反應催化劑LiN(CF3S02)2:和它的同系列化合物MN(RsS02)2(其中,M為1價陽離子,如H+,U+,Na+等;Rf為CF3,C2F5,C3F7,C4F9等全氟烷基),是用于有機催化裂化、加氫裂化、催化重整、異構化、烯烴水合、甲苯歧化、醇類脫水以及酰基化反應等過程的路易斯酸催化劑。3.制備離子液體。 雙三氟甲烷磺酰亞胺鋰作為鋰電池有機電解質鋰鹽。新型雙三氟甲烷磺酰亞胺鋰標準
雙三氟甲烷磺酰亞胺鋰的安全信息。山西雙三氟甲烷磺酰亞胺鋰
浙江大學工程力學系曲紹興教授與賈錚教授課題組研發了一種具有優異力學性能的全固態離子導電彈性體,成果以《AMechanicallyRobustandVersatileLiquid-FreeIonicConductiveElastomer》為題發表在材料領域**期刊AdvancedMaterials上。他們將酯類單體乙二醇甲醚丙烯酸酯(MEA)、丙烯酸異冰片酯(IBA)和雙三氟甲烷磺酰亞胺鋰(LiTFSI)按一定比例混合,通過自由基聚合的方法,制備了一種新型的全固態離子導電彈性體。該材料中高分子網絡與離子間存在大量氫鍵與鋰鍵,這些氫鍵與鋰鍵起到物理交聯點的作用并且在材料受拉伸時可發生斷裂、耗散大量能量,使得該離子導電彈性體擁有極好的力學性能。此外,該離子導電彈性體具有非晶結構(圖1b)和良好的透明度。含鹽量為0.5M的離子導電彈性體的可拉伸性超過1600%,其工作溫度窗口在-14.4゜(相轉變溫度)到200゜(熱分解溫度,圖1e)之間,相比水凝膠而言具有極高的溫度穩定性。山西雙三氟甲烷磺酰亞胺鋰