華南理工大學(xué)Min Zhu、Renzong Hu團(tuán)隊,以“Constructing Li‐Rich Artificial SEI Layer in Alloy‐Polymer Composite Electrolyte to Achieve High Ionic Conductivity for All Solid‐State Lithium Metal Batteries”為題,在Advanced Materials期刊上發(fā)表***研究成果:通過在聚合物基聚(環(huán)氧乙烷)-雙三氟甲烷磺酰亞胺鋰復(fù)合固體電解質(zhì)(簡稱PEOm)中添加鋰基合金,構(gòu)建了約60 nm厚的人造富鋰界面層,實現(xiàn)了固體電解質(zhì)的高離子電導(dǎo)率。高分辨率透射電子顯微鏡(HRTEM)和電子能量損失譜(EELS)顯示,在鋰基合金顆粒周圍形成了一個非晶特征的人工界面層,鋰在該界面層上呈梯度分布。電化學(xué)分析和理論建模表明,界面層提供了快速的離子傳輸路徑,對實現(xiàn)PEOm-Li21Si5復(fù)合固體電解質(zhì)的高穩(wěn)定離子電導(dǎo)率起著關(guān)鍵作用。雙三氟甲基磺酰亞胺鋰可用于制備鋰電池的電解質(zhì)以及新型稀土路易斯酸催化劑。陜西有名的雙三氟甲烷磺酰亞胺鋰
由于有氟化物的存在,是造成鈍化膜形態(tài)相當(dāng)致密和均勻的原因。**明顯的例子可能是由鋰或鈉電解質(zhì)形成的SEI膜,這些電解質(zhì)基于高濃度的雙三氟甲烷磺酰亞胺(TFSI)鹽(鋰為21m,Na為9m)。透射電子顯微鏡下主要由幾乎完全結(jié)晶的LiF,加上相應(yīng)的鋰或鈉離子電池實際上能夠以相當(dāng)高的速率運(yùn)行,這與氟化物有害于相間的基本功能相悖。通過一種尚未被理解的機(jī)制,離子的傳輸不會通過那些幾乎完全結(jié)晶的LiF或NaF的SEI膜,Zhang等人通過計算和實驗證明了LiF和Li2CO3之間的界面接觸是另一種常見的相間成分,也是半相結(jié)構(gòu)的密切相似之處。現(xiàn)代化雙三氟甲烷磺酰亞胺鋰分解雙三氟甲烷磺酰亞胺鋰的分子量。
吉林大學(xué)孫俊奇教授研究小組報道了一種具有自修復(fù)性能和高離子導(dǎo)電率的柔性固態(tài)凝膠電解質(zhì)。該凝膠電解質(zhì)由含有2-脲基-4[H]啶酮(UPy)基團(tuán)的聚離子液體,咪唑類離子液體和鋰鹽(雙三氟甲烷磺酰亞胺鋰)的**溶液經(jīng)溶劑揮發(fā)和熱壓的方法制備而成。其中,UPy基團(tuán)間的四重氫鍵將聚離子液體交聯(lián)從而形成了穩(wěn)定的聚離子液體網(wǎng)絡(luò)。同時,由于聚離子液體和離子液體的相容性和靜電相互作用,上述聚離子液體網(wǎng)絡(luò)可以負(fù)載大量的離子液體(離子液體為聚離子液體質(zhì)量的3.5倍)從而形成了固態(tài)的離子液體凝膠(Ionogel)電解質(zhì)。該凝膠電解質(zhì)的離子導(dǎo)電率高達(dá)1.41×10-3S/cm,同時表現(xiàn)出良好的柔性、彈性和優(yōu)異的不可燃燒性質(zhì)。基于該凝膠電解質(zhì)組裝的Li|Ionogel|LiFePO4電池表現(xiàn)出了良好的充放電循環(huán)性能,該電池在0.2C倍率下循環(huán)120周期后的放電容量和庫倫效率分別為147.5mAh g-1和99.7%,上述性能均優(yōu)于同等條件下以離子液體或傳統(tǒng)的液態(tài)電解液作為電解質(zhì)所組裝的電池。
研究了雙三氟甲烷磺酰亞胺陰離子Tf2N分別與5種不同陽離子組成的離子液體對產(chǎn)紫青霉菌(PenicilliumpurpurogenumLi-3)的生長、代謝、細(xì)胞膜透性及全細(xì)胞催化活性的影響結(jié)果表明,[N1,4.4,4]Tf2N對產(chǎn)紫青霉菌的生長有促進(jìn)作用,[Py14]Tf2N,[Bmim]Tf2N,[BPy]Tf2N和[P6.4.4,4]Tf2N4種離子液體對產(chǎn)紫青霉菌的生長則均有不同程度的抑制。代謝活力保留值R的測定結(jié)果表明,[P6.4.4,4]Tf2N和[N14.4.4JTf2N對產(chǎn)紫青霉菌體細(xì)胞表現(xiàn)出相對較高的生物相容性;5種離子液體對菌體細(xì)胞的細(xì)胞膜透性均有改善作用。全細(xì)胞催化反應(yīng)數(shù)據(jù)顯示比較好離子液體為[Py14]Tf2N,當(dāng)其加入量為25%,反應(yīng)84h后,單葡萄糖醛酸基甘草次酸(GAMG)產(chǎn)率高達(dá)95.38%。5種離子液體對產(chǎn)紫青霉菌的生長、代謝、細(xì)胞膜透性及全細(xì)胞催化活性的影響不僅與陰離子Tf2N有關(guān)陽離子的組成、結(jié)構(gòu)和性質(zhì)也發(fā)揮重要的作用。雙三氟甲烷磺酰亞胺鋰產(chǎn)品規(guī)格、參數(shù)。
一般而言,電解液中有機(jī)溶劑和溶質(zhì)容易分析并模仿,但添加劑成分通常很難分析出來。可以說,添加劑的成分是電解液企業(yè)的技術(shù)**所在。常見的添加劑分類包括SEI(改善石墨負(fù)極表面的固體電解質(zhì)界面膜性能)成膜添加劑、抗過充添加劑、阻燃添加劑、穩(wěn)定添加劑、浸潤添加劑、除酸除水添加劑等等。常見的添加劑有雙草酸硼酸鋰(LiBOB)、二氟草酸鋰(LiDFOB)、雙三氟甲烷磺酰亞胺鋰(LiTFSI)和雙氟磺酰亞胺鋰(LiFSI)等。以其中的LiFSi為例,目前全球范圍內(nèi)*有日本的觸媒公司實現(xiàn)產(chǎn)業(yè)化生產(chǎn),國內(nèi)的氟特電池(新三板.上市公司)目前有小批量出貨,因此相對于日韓企業(yè)來講,目前國內(nèi)電解液企業(yè)在添加劑方面處于相對落后的地位。硅烷基咪唑雙三氟甲烷磺酰亞胺離子液體氣相色譜固定相的性能評價。發(fā)展雙三氟甲烷磺酰亞胺鋰劑量
雙三氟甲烷磺酰亞胺鋰水分:小于100ppm(水分一般在40ppm左右)。陜西有名的雙三氟甲烷磺酰亞胺鋰
PDES-CPE的制備過程示意圖。將四種固體粉末:丁二腈(SN)、雙三氟甲烷磺酰亞胺鋰(LiTFSI)、二氟草酸硼酸鋰(LiDFOB)和一種合成的單體甲基丙烯酸(2-(((2-氧代-1,3-二氧戊烷基-4-基)甲氧基)甲酰胺基))-乙酯(CUMA)均勻混合得到熔融的前驅(qū)體,加入具有正極、負(fù)極、隔膜的電池中,在60 ℃充分聚合得到含有PDES-CPE的電池。通過截面掃描電鏡圖和能譜圖看出,正極和電解質(zhì)呈現(xiàn)出緊密的接觸,原位聚合的電解質(zhì)可以均勻滲透到工業(yè)水平的正極(70 μm,26 mg/cm2)中,有益于界面阻抗的降低和界面的離子傳輸。根據(jù)PDES-CPE聚合前后的1H核磁共振譜,通過聚合后的單體和殘余單體所對應(yīng)的峰的積分面積計算,得出PDES-CPE的聚合轉(zhuǎn)化率高達(dá)99.8 %(圖1c)。CUMA中的甲基丙烯酸酯結(jié)構(gòu)在聚合時具有快速的鏈增長動力學(xué)性能,且其聚合物自由基中間體與SN或鋰鹽之間的鏈轉(zhuǎn)移反應(yīng)較少;另外,CUMA較短的鏈長使得其在鏈增長過程中反應(yīng)活化能較低,決定了PDES-CPE的高聚合轉(zhuǎn)化率。陜西有名的雙三氟甲烷磺酰亞胺鋰