早在幾年前,關于新能源汽車的競爭就已經悄然打響,但在前期不溫不火的市場情況下,這場競爭并沒有被過多的目光關注。而近幾年隨著特斯拉的強勢攪局,國內新能源勢力的不斷成長,都讓戰局越發緊張起來。而在車企圍繞著交付量和毛利打得水深火熱的時候,動力電池作為新能源汽車的上游產業,也扮演著“后勤保障”的身份,為前線的車企提供源源不斷的電池供給。前線的火熱戰局,同樣讓作為后勤的動力電池企業吃到了不少紅利。而這也說明,新能源汽車市場的不斷成長,讓動力電池市場同樣走上了快車道。電流傳感器的探頭采用變壓器式的結構,在交變電流的周期性激勵下,將磁場信號轉變成電信號。青島光伏逆變器電流傳感器發展現狀
磁通門電流傳感器在MRI(磁共振成像)中有廣泛的應用。MRI是一種非侵入性且無輻射的醫學成像技術,通過使用強磁場和無線電波來生成身體內部的高分辨率影像。 磁通門電流傳感器被用于測量MRI系統中的電流,主要包括以下幾個方面的應用: 主磁場穩定性控制:MRI系統中的主磁場是生成圖像所必需的,而其穩定性對于獲得高質量的圖像至關重要。磁通門電流傳感器被用來監測主磁場的電流變化,以幫助控制和維持主磁場的穩定性。 梯度線圈控制:MRI系統通過應用梯度線圈來生成圖像中的空間信息。磁通門電流傳感器被用于監測梯度線圈的電流變化,以確保梯度線圈的準確控制和調節,從而獲得高質量的圖像。 射頻線圈控制:MRI系統使用射頻線圈來發送和接收無線電波信號,以圖像化身體結構和組織。磁通門電流傳感器被用于監測射頻線圈的電流變化,以幫助調節射頻線圈的功率和頻率,確保信號的正確發送和接收。 總結來說,磁通門電流傳感器在MRI中的應用主要是用于監測和控制主磁場、梯度線圈和射頻線圈的電流變化,以確保MRI系統的穩定性和圖像質量,從而為醫學診斷提供高精度的影像數據。溫州工控級電流傳感器報價無錫納吉伏科技有限公司團隊是國內早期研發磁調制式電流傳感器并推向市場的廠商,已有10年技術積累。
飽和電感的電感數值依賴于磁芯的磁導率,磁通密度高的時候磁芯飽和,電感值較低。低磁通密度時,電感值則較高。外部磁場的變化影響磁芯的飽和水平,進而改變磁芯導磁系數,然后影響電感值。因此,當存在外界磁場時將會改變場測量的電感值。如果飽和電感設計充分,這種改變非常明顯。磁通門探頭的磁通變化由激勵電流以及初級被測電流的共同變化得出。由于被測初級電流上的存在引起電感值變化,應用閉環原理進行檢測以及補償,補償電流輸入到傳感器的次級線圈中,使得開口處場強為0,電感返回至一個參考值。初級電流和次級電流的關系就會由匝數比很明確的給出來。
無錫納吉伏研發的新型傳感器包含電流探頭、信號處理電路、反饋電路及模數轉換電路。該新型電流傳感器的電流探頭結構為一個均勻纏繞次級線圈的環形磁芯,感應到的電流信號進入信號處理電路,再通過反饋電路實現復雜電流信號的測量,模數轉換電路用于電流信號數據的進一步處理。無錫納吉伏所研發的電流傳感器磁芯采用超微晶材料,并基于雙向飽和式磁通門原理, 因而具有很好的溫度穩定性。為了拓寬其測量范圍及頻率,在不改變原測量電路與測量探頭結構的基礎上,采用時間比例型磁通門原理并結合電流互感器原理實現低頻小電流和高頻電流測量。幾乎所有的用電設備都是通過電流傳感器來實現測量、檢測、保護、反饋控制等功能。
光纖電流傳感器是一種新型的電流傳感器,它以光纖為傳輸介質,基于法拉第磁光效應來完成對電流的感應。法拉第效應指的是線偏振光傳播過程中,若加一與其傳播方向平行的磁場,則光的振動方向將會發生偏轉,且其偏轉的角度受磁場強度和光穿介質長度成正比。基于這種原理形成的光纖電流傳感器具有易安裝、抗干擾性強、傳輸損耗小等特點,正逐步得到更廣泛的應用。在光纖電流傳感器中,被測電流的導線周圍產生磁場,該磁場使環繞在光纖上的磁光晶體發生法拉第效應,即由于磁場變化而引起磁光晶體透過率發生變化,透過率的變化又直接反映到干涉儀的輸出電壓上,進一步反映出被測電流的變化。光纖電流傳感器精度較低,適合特別大的電流測量的場景。磁通門電流傳感器適合于動力電池電量監測,高精度電流監測等應用場合:如電動汽車電池管理系統。溫州測量級電流傳感器報價
獨特的屏蔽式磁探頭設計,提升了復雜電磁環境下的抗干擾能力;青島光伏逆變器電流傳感器發展現狀
目前存在的電流檢測技術和方法有很多,根據測量方法和方式的不同,電流傳感器可分為非隔離式與電隔離式兩種。非隔離式主要是指分流電阻。電隔離式主要包括霍爾電流傳感器(Hall-transducer),羅氏線圈(Rogowski Coil),電流互感器(Current transformer),磁通門電流傳感器(Fluxgate current sensor)以及巨磁阻電流傳感器(GMR current sensor )等。 分流器適用于直流電流的測量,但是在大電流作用下發熱嚴重,導致測量誤差,若要滿足測量精度,分流器的體積和成本就會增大,因此分流器多應用于允許誤差范圍較大的場合。青島光伏逆變器電流傳感器發展現狀