閉環霍爾電流傳感器也常用于進行大電流測量,其利用霍爾元件測量出磁場,進而根據磁場與電流的比例關系確定導線電流的大小。其優點是不與被測電路發生電接觸,不影響被測電路,不消耗被測電源的功率,避免了在測量大幅值電流時的發熱問題,但由于霍爾器件本身的缺陷,極易受到外部環境 因素的影響,準確度等級難以做高,一般只能達到0.5級。閉環霍爾電流傳感器適用于低精度、低成本的電流測量場景。其它種類的電流傳感器,如羅氏線圈、光纖傳感器等,其準確度和穩定性均與霍爾傳感器相當甚至更低。磁通門電流傳感器抗干擾強:激勵磁場持續振蕩,可等效于消磁磁場。佛山板載式電流傳感器單價
電流傳感器測量原理的實現依賴于結構的設計,現有磁通門的結構一般包括標準型磁通門電流傳感器結構,雙磁芯型及三磁芯型結構。但是現有這些磁通門結構并不能實現高溫環境下復雜電流波形的測量。標準磁通門電流傳感器實際與閉環霍爾電流傳感器結構相似,由相同帶縫隙的磁路和用來得到零磁通的次級線圈構成,霍爾電流傳感器與磁通門電流傳感器主要的區別在于氣隙磁場檢測方式的不同:前者是通過一個霍爾元件獲得電壓信息進而得到被測電流;后者則是通過一個所謂的飽和電感來測量電流的。連云港納吉伏電流傳感器服務電話磁通門電流傳感器頻響寬,有著很好的頻響特性,納吉伏研發的磁通門電流傳感器帶寬可達10MHz。
光伏發電系統中漏電流的檢測存在以下問題:(1)漏電電流是毫安級,而負荷電流是安培級,在數量級上相差很大,并且二者在電流傳感器中同時存在。這使得漏電電流的檢測與絕緣診斷領域和電氣測量技術領域內的一般電流測量方法不同,并且漏電電流傳感器需要滿足更高的靈敏度和抗干擾性要求。然而,在大負荷電流時,載流導體周圍產生很強的磁場,會影響到剩余電流傳感器的輸出特性,產生“假剩余電流”,可能導致漏電保護器的誤動作;(2)光伏發電系統中存在嚴重的高頻雜散磁場,也導致電流傳感器的性能受到很大的影響。上述兩點使得漏電電流的準確檢測與識別更加困難。通過現有技術方案分析可知,現有的漏電電流傳感器并不能很好地應用于光伏并網發電系統中。
光伏發電系統高效可靠地運行需要高精度可靠的控制,而各種控制方法的有效性可靠性需要精確的電流信號檢測來保證。區別于傳統的發電系統,光伏發電系統中存在明顯的共模電流問題。由于共模電流的存在,傳統的漏電保護技術應用于光伏并網發電系統中并不像人們起初期望的那樣有效,隨著光伏并網規模的不斷擴大,其中要提高光伏并網發電系統漏電保護的有效性以及可靠性,首先要解決的問題是漏電電流的準確檢測與識別;同時,對于光伏發電系統,為了提高電能質量和光伏發電系統的可靠性和安全性,需要對電流實現精確檢測。分流器精度受限:分流器分配的輸出比例不能保證完全準確,存在一定誤差。
傳感器激勵信號對探頭和整個系統都產生很大的影響,一般從頻率穩定度、信號幅值穩定度、相位穩定度、波形穩定度這幾個方面來考慮激勵信號的選擇。此外,激勵信號頻率的高低很大程度影響著傳感器的工作性能,頻率太高,則會增大噪聲;頻率太低則會降低傳感器的靈敏度,通常,激勵很好的頻率會在幾百到幾千赫茲。綜合以上各個因素,選擇頻率為 9.6KHZ的方波作為傳感器的激勵信號,同正弦波相比,方波可以由石英晶體直接產生,能比較容易的獲得,且有更好的穩定度,更重要的是方波只有正負電平兩個電壓幅值,這比正弦波的電壓幅值的穩定度要好很多。由晶振和分頻器CD4006組成來產生方波。頻率源產生穩定的方波激勵信號由耦合電容送給探頭繞組。另外,選用高驅動能力、高精度、低噪聲、低溫漂的運放TS922,并采用雙電源供電。磁通門電流傳感器寬帶特性好,可測量不同頻率下的被測電流。山西儲能電池測試電流傳感器哪家便宜
霍爾效應是美國物理學家霍爾于1879年發現的,它被廣泛應用在磁場的測量、控制和調節等領域。佛山板載式電流傳感器單價
電流傳感器在電網中的應用如下: 實時監測電流。在電力變壓器中,通過電流傳感器可以實時監測電流的大小,以判斷是否存在過載或短路故障,并及時采取措施進行保護。 負荷分配和調度。電流傳感器可用于電力監控系統中,幫助實時監測電網的負荷情況,以便進行合理的負荷分配和調度。無錫納吉伏研發的?精度?量程電流傳感器系列產品,可測量直流和交流電流,具備優異的準確度、線性度、穩定性和?作帶寬,應?于電?傳動、電?電?、軌道交通、新能源、家?電器、核磁共振等領域。佛山板載式電流傳感器單價