高頻技術已經發展為電力電子技術十分重要的方向,對高頻電力電子設備中復雜電流信號的檢測,并兼顧高靈敏度,高集成度,高線性度,高溫環境下測量穩定的特點已變得十分必要。磁通門原理作為具有高線性度,高集成度,溫漂小等特點的電流傳感器重要類型,適合精密電流及惡劣環境下的電流測量。但是目前磁通門原理常應用偶次諧波法及反饋積分法,這兩種測量方法探頭結構復雜,處理電路元器件多,集成度低,數字化程度不高。無錫納吉伏公司研發出一種基于磁通門原理的雙向飽和式磁通門電流傳感器,采用單探頭自激發生電路,不僅簡化了探頭結構,而且處理電路中元器件較少,電路 集成度高,同時電路測量結果采用數字顯示。該電流傳感器的提出進一步提高了電力電子電路的控制與保護技術的準確度,滿足了當代電力電子發展中對電流的高溫環境下測量的要求。基于磁通門原理的電流傳感器具有高靈敏性,其測量精度比霍爾型互感器高,可以達到1ppm級別。寧波光伏逆變器電流傳感器聯系方式
無錫納吉伏研發的電流互感器端引入了反饋控制電路,而且這個反饋電路與前文中雙向飽和磁通門電流傳感器應用的的反饋電路為同一個,這樣的設計不僅有效解決了電流互感器的深度飽和問題,同時由于沒有再引入新的反饋電路,從而減少了整個電路的器件,有利于實現電流傳感器的微型化和低功耗。 新型電流傳感器測量原理為:新型電流傳感器基于電流值大小以及頻率高低的不同而選擇不同的測量策略。當被測電流為包含不同頻率波形的復雜電流時,信號處理電路會通過分頻進行頻率選擇。低頻側,當被測電流大于使磁芯飽和時的小電流時, 應用雙向飽和式磁通門原理對電流進行測量;當被測電流小于使磁芯飽和時的小電流值時,時間比例型磁通門發揮作用來測量電流。高頻側,應用電流互感器原理測量高頻交流電。惠州計量級電流傳感器磁通門電流傳感器頻響寬,有著很好的頻響特性,納吉伏研發的磁通門電流傳感器帶寬可達10MHz。
當被測電流為低頻交流電時,激磁電路的工作過程要比被測電流為直流電時的情況要更復雜,所以很難求出被測電流的數學表達式。其主要原因在于:當被測電流為交流電流時,每一個激磁電流產生的周期之內磁芯達到正負磁飽和的時間不確定,而是與被測交流的瞬時值大小有關系;尤其是當被測電流為非正弦復雜波形時,更加難以得到被測電流的瞬時測量值。但是,在被測電流頻率比激磁頻率低得多的情況下,可通過被測電流為直流電時得出的 結論對低頻交流電進行分析。由于被測電流信號與激磁電流信號相比變化緩慢得多,這時,可以假設在每個激磁周期T內被測電流的幅值基本保持不變。因此,可以將被測低頻交流電當作是持續時間很短的直流電流的疊加。
電流傳感器在電網中的應用如下: 實時監測電流。在電力變壓器中,通過電流傳感器可以實時監測電流的大小,以判斷是否存在過載或短路故障,并及時采取措施進行保護。 負荷分配和調度。電流傳感器可用于電力監控系統中,幫助實時監測電網的負荷情況,以便進行合理的負荷分配和調度。無錫納吉伏研發的?精度?量程電流傳感器系列產品,可測量直流和交流電流,具備優異的準確度、線性度、穩定性和?作帶寬,應?于電?傳動、電?電?、軌道交通、新能源、家?電器、核磁共振等領域。據統計我國電流傳感器市場規模從2016年的20.58億元增長至2022年的53.15億元;
當磁通門式電流傳感器工作時,激勵線圈中加載一固定頻率、固定波形的交變電流進行激勵,使磁芯往復磁化達到飽和。在不存在外在電流所產生的被測磁場時,則檢測線圈輸出的感應電動勢只含有激勵波形的奇次諧波,波形正負上下對稱。當存在直流外在被測磁場時,則磁芯中同時存在直流磁場和激勵交變磁場,直流被測磁場在前半周期內促使激勵場使磁芯提前達到飽和,而在另外半個周期內使磁芯延遲飽和。因此,造成激勵周期內正負半周不對稱,從而使輸出電壓曲線中出現振幅差。該振幅差與被測電流所產生的磁場成正比,因此可以利用振幅差來檢測磁環中所通過的電流。自研全自動電流傳感器“校準測試系統”,提高了產品出廠測試精度和效率;徐州工控級電流傳感器價格大全
電流傳感器是一種將測量電流轉換成易于測量的電壓信號的設備,常用于電力、工業控制和汽車領域等。寧波光伏逆變器電流傳感器聯系方式
其一次電流線作為被測電流輸入端,二次電流線輸出端接負載。當一次電流線的安匝數和二次電流線的安匝數不相等時,會在環形磁芯中產生磁通,進而在兩個磁通門電路上會產生單調跟隨一次電流與二次電流的安匝數之差的電壓信號回。當一次電流的安匝數小于二次電流的安匝數時,兩個磁通門電路會產生負相的信號,通過放大電路,減小二次電流安匝數;當一次電流線的安匝數大于二次電流線 的安匝數時,兩個磁通門電路會產生正相的信號,通過放大電路,增大二次電流安匝數。從而形成一個動態的平衡,使二次電流線的安匝數等于一次電流線的安匝數。寧波光伏逆變器電流傳感器聯系方式