由于高頻大功率電力電子設備應用的增加,這些設備中可能會產生交直流復合的復雜電流波形,包含直流、低頻交流和高達幾十千赫茲以上的高頻成分。高頻電力電子系統的實現依賴于整流、逆變、濾波等環節,逆變器的作用在系統中尤其重要。逆變器的拓撲結構有以下幾種形式:帶工頻變壓器的逆變器、帶高頻變壓器的逆變器和無變壓器的逆變器三種基本形式。將隔離變壓器置于逆變器和輸入電路之間,可實現前后級電路的電氣隔離,防止直流電流分量注入到后級電路中。但是這樣會造成變壓器本身損耗增大,效率明顯降低,而且由于變壓器的加入提高了系統整體成本,增大了電路體積。無變壓器型逆變器則由于其成本較帶變壓器型明顯降低,效率得到提高而越來越受到人們的非常多的關注。但是由于逆變器輸出的交流中可能含有直流成分 ,因此這種情況下要求電流傳感器能夠測量較小的直流成分。由于逆變器中的功率開關管的高頻開關特性,濾波電感中的電流會在指定輸出電流頻率的基礎上波動,可能含有與基頻相比大很多的高頻紋波。因此,無錫納吉伏研發的同時可以測量直流微小電流,低頻及高頻交流的傳感器就顯得十分必要。在循環測試中,同時監測電池的溫度,以避免電池因過熱而損壞,記錄電池在不同溫度下的性能指標。天津循環測試電流傳感器廠家
時間差型磁通門(Residence Time Difference Fluxgate RTD)原理的獲得來源于實驗:磁通門調峰法。調峰法實驗的具體過程如下:被測磁場通過磁通門軸向分量,這時磁通門信號的輸出便會發生一定的偏移。記錄下磁通門輸出信號在這一時刻的偏移位置,然后再將被測磁場移除。將通電線圈放置在與被測磁場相同的磁通門軸向方向上,從零增大通電線圈電流幅值直到使磁通門信號的輸出重新移動到剛才記錄的位置。通過通電電流的大小以及磁芯上線圈匝數,被測磁場的大小便可以計算出來。但是由于當時的頻率計值等數字化器件的發展程度不高,因此磁通門調峰法實驗只能作為一個實驗現象來研究而未做更深入的探討。蕪湖分流器電流傳感器供應商電流傳感器探頭是由磁芯、被測繞組和激勵繞組組成。
在整個儲能系統中,電功率轉換系統(Power ConversionSystem, PCS)是其中的重要部件。PCS又叫儲能變流器,是儲能單元的功率調節的執行設備,在監控與調度系統的調配下,實施有效和安全的儲能和放電管理。PSC在儲能系統中是電池與電網之間的橋梁,當儲能系統工作在儲能模式時,PSC將電網的交流電轉變為直流電給電池組充電,而當儲能系統工作在并網發電模式時,PSC將電池的直流電轉變為交流電進行并網發電。因此PSC需要擁有以下特性:PSC可以雙向工作,既可工作在逆變模式,也可工作在整流模式;PSC正常工作時,電流波形呈現正弦波形,盡可能地不向電網注入直流分量以及低頻諧波;PSC的有功功率和無功功率可以大范圍地調節。目前常用的變流器控制策略有PQ控制、VF控制、下垂控制、虛擬同步機控制四種方式。無錫納吉伏研發的CTC系列和CTD系列電流傳感器,基于零磁通和磁調制原理的高精度電流傳感器,為交流或直流檢測提供了更加經濟、精確的解決方案,可以用于電機控制、負載檢測和負載管理、電源和DC-DC轉換器、光伏逆變器、UPS、過流保護和中低功率變頻器電流檢測等應用。
霍爾效應是電磁效應的一種,這一現象是美國物理學家霍爾(E.H.Hall,1855—1938)于1879年在研究金屬的導電機制時發現的。當電流垂直于外磁場通過半導體時,載流子發生偏轉,垂直于電流和磁場的方向會產生一附加電場,從而在半導體的兩端產生電勢差,這一現象就是霍爾效應,這個電勢差也被稱為霍爾電勢差。霍爾效應是霍爾電流傳感器的工作原理。霍爾電流傳感器是基于磁平衡式霍爾原理,從霍爾元件的控制電流端通入電流Ic,并在霍爾元件平面的法線方向上施加磁感應強度為B的磁場,那么在垂直于電流和磁場方向(即霍爾輸出端之間),將產生一個電勢VH,稱其為霍爾電勢,其大小正比于控制電流I與磁感應強度B的乘積。單棒型磁通門傳感器的感應繞組與激勵繞組為同一組繞組,其被測磁場與激勵磁場的方向平行。
霍爾原理是基于霍爾效應的一種物理現象,用于測量電流、磁場以及速度等物理量的原理。霍爾效應是指當一個載流子(如電子或空穴)通過一段具有電流的導電材料時,如果該導電材料處于一個垂直于電流方向的磁場中,會在該材料上產生一種電壓差。這個電壓差被稱為霍爾電壓,其大小與電流、磁場以及導電材料的特性有關。基于霍爾效應的原理,可以制造霍爾元件,如霍爾傳感器,用來測量磁場強度、電流等物理量。典型的霍爾傳感器包括霍爾元件、放大器和輸出接口等組件。當霍爾元件處于磁場中,載流子在材料內運動,受磁場力的作用,產生一側電勢高于另一側的現象,形成霍爾電壓。通過霍爾傳感器的放大器,可以將微弱的霍爾電壓放大成可測量的電壓信號。輸出接口可以將信號傳遞給測量儀器或控制系統進行進一步處理。霍爾原理的優勢在于其非接觸式測量和高靈敏度。由于霍爾傳感器內部實際上沒有電流通過,因此不存在耗損和磨損的問題,具有較長的使用壽命和穩定性。此外,霍爾傳感器對于小信號的測量也具有較高的靈敏度。基于霍爾原理的應用包括磁場測量、電流檢測、位置和速度測量等。在自動化、汽車、電子設備等領域都得到廣泛應用。廣泛應用于新能源裝備、工業控制、軌道交通、電測儀表、醫療設備、粒子加速、新能源車載設備器等領域。寧波LEM電流傳感器生產廠家
內阻測試儀是一種用于測量電池內阻的設備,通過測量電池的電壓和電流信號,可以計算出電池的內阻。天津循環測試電流傳感器廠家
磁通門傳感器是應用被測磁場中高導磁率磁芯在交變磁場的飽和鼓勵下,其磁感應強度與磁場強度的非線性關系來丈量弱磁場的。這種物理現象對被測環境磁場來說仿佛是一道“門”,經過這道“門”,相應的磁通量即被調制,并產生感應電動勢。應用這種現象來測量電流所產生的磁場,從而間接的到達測量電流的目的。磁通門電流傳感器的精度要比霍爾電流傳感器更高,原因在于:1.磁通門原理的高靈敏性;2.閉環磁平衡技術,輸出嚴格按照匝比對應關系;3.磁通門原理使用整體磁芯,不帶任何氣隙,因此無漏磁,亦沒有位置誤差;4.雙磁通門探頭設計,補償并消除磁通門探頭振蕩諧波影響,輸出更干凈;零點失調offset更小,并且可微調。天津循環測試電流傳感器廠家