Ve為合成電壓信號VR12經低通濾波后的誤差電壓信號。設計電路參數R1=R2,R4=R5。Q1為NPN型功率放大三極管,型號為TIP110,Q2為PNP型功率放大三極管,型號為TIP117。AB類功率放大輸出端串接反饋繞組WF及終端測量電阻RM形成反饋閉環。反饋繞組匝數NF直接影響新型交直流傳感器的比例系數,NF越大,交直流電流傳感器靈敏度越低,線性區量程也越大,另外PA功率放大電路的輸出電流能力也制約了反饋繞組匝數NF不能設計過小,但反饋繞組匝數NF過大,其漏感也越大,分布電容參數越大,系統磁性及容性誤差將會增大。因此需要綜合考慮靈敏度、功放帶載能力及量程等要求,所設計反饋繞組匝數NF=1000。將一次電流中的直流和交流分量分通道單獨檢測研制了四鐵芯六繞組交直流電流比較儀。福州高頻電流傳感器發展現狀
電流傳感器的工作原理有多種,其中一種是通過分流器來工作的。分流器其實是一個具有已知歐姆值的電阻器。當電流通過分流器時,就會在分流器上產生一個電壓,這個電壓與通過的分流器的電流成正比。這就是歐姆定律的應用,即電壓等于電阻乘以電流。利用這個原理,我們可以準確地測量交流和直流電流。 另外一種測量電流的方法是使用磁場。霍爾效應電流傳感器就是利用磁場來測量電流的一種設備。當電流通過一個導體時,會產生一個垂直于導體表面的磁場,這個磁場會產生一個與磁場強度成比例的電壓。這個電壓可以使用安培定律來計算流過導體的電流量。 電流傳感器的種類很多,有不同的測量技術,初級電流也會因波形、脈沖類型、隔離和電流強度等因素而有所不同。所以在市場上有很多不同類型的電流傳感器可供選擇。在選擇使用電流傳感器時,需要根據實際的應用需求和條件來選擇適合的電流傳感器。遼寧納吉伏電流傳感器聯系方式磁場穩定性:由于激勵磁場是持續振蕩的,它可以有效地抵消外部磁場的干擾,從而保證了測量的準確性。
新型交直流傳感器的環節是零磁通交直流檢測器,其線性度制約了整體閉環測量方案的精度。本文設計的零磁通交直流檢測器如圖3-1所示。其包括環形鐵芯C1和C2,及激磁繞組W1,激磁繞組W2和分壓電阻R1,R2。比較放大器U1,單位反向放大器U2,采樣電阻RS1和RS2。首先確定磁芯尺寸及磁性材料選擇,磁性材料各項參數直接影響到所設計零磁通交直流檢測器的靈敏度,并對電路設計參數有所限制[57]。根據第2章分析可知,鐵芯材料需要選擇非線性程度高,即磁導率高,磁飽和強度高,矯頑力低的磁性材料。
VRS1 為采樣電阻 RS1 上電壓信號,V’RS2 為采樣電阻 RS2 上電壓信號 經高通濾波器 HPF 處理后的電壓信號,當 HPF 時間常數設置合理, 可有效濾除采樣電 阻 RS2 上電壓信號中無用低頻分量,因此在 V’RS2 保留反向的無用高頻分量 VH2 。若參 數設置合理,而高頻無用交流分量 VH1 和無用高頻分量 VH2 恰好幅值大小相同,則理論 上通過高通濾波器 HPF 即完成了無用高頻分量的濾除,從而獲得更為純凈的有用低頻 信號。然而實際電路無法保證環形鐵芯 C1 與 C2 及其附加電路一致性,因此無法完成無 用高頻分量完全消除。設計中,新型交直流電流傳感器增加低通濾波器 LPF 進一步對 VR12 中高頻分量進行濾除,從而完成了對信號解調電路的改進。交流比較儀和直流比較儀均不適宜直接用于交直流電流測量.。
式(3-3)表明新型交直流電流傳感器靈敏度與終端測量電阻 RM 阻值成正比,與 反饋繞組匝數 NF 成反比。負號沒有實際意義,表示輸出與輸入信號反相。同時,由于環形鐵芯 C1 與環形鐵芯 C2 工作在完全相反的激磁狀態,采樣電阻 RS2 上的交直流采樣電壓信號 VRS2 中的交直流電流信號理論上與 VRS1 幅值相同,而方向相 反。下一節將具體介紹反向激磁的環形鐵芯 C2 在系統中的具體作用。新型交直流傳感器是基于 PI 比例積分放大電路進行誤差控制的,理論上比例積分 環節將會保證系統穩態誤差為 0,而實際上閉環交直流傳感器工作的電磁環境更為復雜, 在輸入端除了一次繞組 WP 中交直流電流 IP 外,還有在環形鐵芯 C1 上激磁繞組 W1 端的 激磁電壓 Vex1 ,在輸出端存在反饋繞組 WF 中的反饋電流。納吉伏研發的磁通門電流傳感器具有高靈敏度、低噪聲、寬頻響等優點。青島普樂銳思電流傳感器報價
溫度變化和電氣噪聲可能是影響分流器精度的主要因素。福州高頻電流傳感器發展現狀
無錫納吉伏公司基于自激振蕩磁通門技術并結合傳統電流比較儀結構設計了新型交直流電流傳感器,介紹了其系統組成及工作原理。通過分析新型交直流傳感器的誤差來源,對傳統自激振蕩磁通門傳感器進行改進,提出了本文方案中基于雙鐵芯結構自激振蕩磁通門傳感器的交直流檢測器,同時也對解調電路進行了相關優化改進。并結合自動控制理論建立了新型交直流電流傳感器的交直流穩態誤差模型,明確了影響新型交直流傳感器穩態測量誤差的各項因素,為設計新型交直流傳感器提供理論依據及參考方向。依據上述理論研究,設計了高線性度與靈敏度的交直流電流檢測器,依據誤差抑制方法及優化設計原則對其信號處理電路、電流反饋電路、終端測量電阻和電磁屏蔽進行相應設計。然后結合零磁通交直流檢測器的優化設計,完成了高精度交直流電流傳感器樣機研制。福州高頻電流傳感器發展現狀