脈沖發電機電源是由原動機、發電機和整流器三部分構成。發電機由原動機拖動,達到額定轉速后發電機將儲存的旋轉勢能轉換為電能,通過整流器變換得到直流電壓對磁體供電。整流器可以通過反饋控制給磁體提供的電壓電流,具有較好的可控性,可以實現對實驗波形的初步調節和控制。由電容器電源和脈沖發電機電源構成磁體主要的電源系統,其中帶有反饋控制的脈沖發電機電源本身具有一定的可控性,可以將平頂磁場紋波控制在一定精度以內,但脈沖發電機電源本身是大容量電源,如果想進一步降低紋波系數,直接對脈沖發電機進行控制難度很大,所以需要在原有兩套電源系統的基礎上再配合使用一個小容量的補償系統。有兩種主要類型的電壓傳感器: 電容式電壓傳感器和電阻式電壓傳感器。武漢粒子加速器電壓傳感器服務電話
第二階段的仿真是在***次仿真的基礎上,加入了高頻變壓器以及負載部分。第二階段仿真時針對整個電路的仿真,主要目的是對控制方案給以理論研究。閉環反饋控制中采用典型的PID控制模式,仿真過程通過對PID參數的調試加深對控制方案的理解,以便在后續主電路調試過程中能更有目的性的調試參數。主要針對輸出濾波電路的參數、PID閉環參數的設置以及移相控制電路的設計進行研究。仿真電路中輸出電壓設定值為60V,采樣值和設定值作差,偏差量經過PID環節反饋至移相控制電路。移相電路基于DQ觸發器,同一橋臂上PWM驅動脈波設置了死區時間,兩個DQ觸發器輸出四路PWM波分別驅動橋臂上四個開關管。武漢粒子加速器電壓傳感器服務電話接下來,我們可以討論兩個串聯電容器的電壓劃分。
隨著集成化和高頻化的發展,開關器件本身的功耗和發熱問題成為限制集成化和高頻化進一步發展的瓶頸,減小開關器件自身開關損耗促使了軟開關技術的推進。傳統的諧振式、多諧振技術可以實現部分開關器件的ZVC或ZCS,但是這類諧振存在器件應力高、變頻控制等缺點。脈沖寬度調制(PWM)效率高、動態性能好、線性度高,但是為了實現開關管的軟開關,須在電路中引進輔助的器件,這增加了主電路和控制電路的復雜性。在這樣的背景下,移相全橋技術應運而生。相較于其他的全橋電路,移相全橋充分的利用了電路自身的寄生參數,在合理的控制方案下實現開關管的軟開關。相較于傳統諧振軟開關技術,移相全橋變換器又具有頻率恒定、開關管應力小、無需輔助的諧振電路。基于以上對比分析,移相全橋變換器作為我們磁體電源系統中的補償電源。
在電路的控制環節,設計了硬件控制電路并編寫了相應的控制程序。硬件電路基于DSP控制芯片,主要由電源模塊、采樣及A/D轉換模塊、DSP控制模塊、PWM輸出模塊、驅動電路模塊構成。在程序方面,本文著重對移相脈波產生的方式、PID反饋控制的策略進行了研究,同時也完成了信號采集、模數轉換、保護控制等模塊的程序編寫和調試。然后按照補償電源的參數要 求,選擇了基于 TMS320F2812(DSP)的移相全橋變換電路作為補償電源的拓撲結 構。討 論了長脈沖高穩定磁場的研究意義、發展現狀和現今的難點,基于存在的問題提出 了對強磁場電源系統的優化, 提出了補償電源的方案。但其體積大,頻帶較窄,一般只能用于工頻或其它額定頻率測量,并且具有諧振和輸出不能短路等問題。
隨著現代實驗研究不斷的深入和科學的不斷發展,科學家對強磁場環境的要求也越來越高,從而對脈沖強磁場的建設也提出了更高的要求。在歐美以及日本等發達國家已經較早建立了強磁場實驗室,主要有美國國家強磁場國家實驗室、法國國家強磁場實驗室、德國德累斯頓強磁場實驗室、荷蘭萊米根強磁場實驗室以及日本東京大學強磁場實驗室。我國強磁場領域起步較晚,近年來,華中科技大學脈沖強磁場中心開展了大量 關于脈沖強磁場的研究工作。通過鑒相器檢測光波相位差來實現對外電壓的測量。武漢粒子加速器電壓傳感器服務電話
有兩種方法可以將敏感元件的電阻轉換為電壓。武漢粒子加速器電壓傳感器服務電話
根據實際工作過程分析,超前橋臂上開關管開通過程中,原邊電路保持向負載端輸送能量,則負載端濾波電感等效于和原邊諧振電感串聯,這樣對超前橋臂上兩個諧振電容充放電的能量由原邊諧振電感和負載端濾波電感共同提供,這樣能量關系式很容易滿足[6]。時間關系式只需要適當增大死區時間即可,超前橋臂上開關管的零電壓開通很容易實現。滯后橋臂上開關管開通過程中,橋臂上諧振電容的充放電能量**來自于諧振電感,并且在此過程中電源相當于是負載吸收諧振電感中的儲能,電流處于減小的狀態,從而滯后橋臂上開關管的零電壓開通實現難度增大。武漢粒子加速器電壓傳感器服務電話