微納加工技術也可分為機械加工、化學腐蝕、能量束加工、復合加工、隧道掃描顯微技術加工等方法。機械加工方法包括單晶金剛石刀具的超精密切割、金剛石砂輪和CBN砂輪的超精密磨削和鏡面磨削、磨削、砂帶拋光等固定磨料工具的加工、磨削、拋光等自由磨料的加工。能束加工可以去除加工對象、添加和表面改性。例如,激光切割、鉆孔和表面硬化改性。光刻、焊接、微米和納米鉆孔、切割、離子和等離子體蝕刻等。能量束的加工方法還包括電火花加工、電化學加工、電解射流加工、分子束延伸等。微納加工是的技術,可以進行原子級操作和原子去除、添加和搬遷。廣東省科學院半導體研究所微納加工平臺,面向半導體光電子器件、功率電子器件、MEMS、生物芯片等前沿領域,致力于打造的公益性、開放性、支撐性樞紐中心。平臺擁有半導體制備工藝所需的整套儀器設備,建立了一條實驗室研發線和一條中試線,加工尺寸覆蓋2-6英寸(部分8英寸),同時形成了一支與硬件有機結合的專業人才隊伍。平臺當前緊抓技術創新和公共服務,面向國內外高校、科研院所以及企業提供開放共享,為技術咨詢、創新研發、技術驗證以及產品中試提供技術支持。微納加工中,材料濕法腐蝕是一個常用的工藝方法。達州石墨烯微納加工
MEMS(微機電系統),是指以微型化、系統化的理論為指導,通過半導體制造等微納加工手段,形成特征尺度為微納米量級的系統裝置。相對于先進的集成電路(IC)制造工藝(遵循摩爾定律),MEMS制造工藝不單純追求線寬而注重功能特色化,即利用微納結構或/和敏感材料實現多種傳感和執行功能,工藝節點通常從500nm到110nm,襯底材料也不局限硅,還包括玻璃、聚合物、金屬等。由MEMS技術構建的產品往往具有體積小、重量輕、功耗低、成本低等優點,已廣泛應用于汽車、手機、工業、醫療、**、航空航天等領域。廣東省科學院半導體研究所微納加工平臺,面向半導體光電子器件、功率電子器件、MEMS、生物芯片等前沿領域,致力于打造的公益性、開放性、支撐性樞紐中心。平臺擁有半導體制備工藝所需的整套儀器設備,建立了一條實驗室研發線和一條中試線,加工尺寸覆蓋2-6英寸(部分8英寸),同時形成了一支與硬件有機結合的專業人才隊伍。平臺當前緊抓技術創新和公共服務,面向國內外高校、科研院所以及企業提供開放共享,為技術咨詢、創新研發、技術驗證以及產品中試提供技術支持。 湖北微納加工中心微納加工技術的特點多學科交叉。
美國在微納加工技術的發展中發揮著主導作用。由于電子技術、計算機技術、航空航天技術和激光技術的需要,美國于1962年開發了金剛石刀具超精細切割機床,解決了激光核聚變反射鏡、天體望遠鏡等光學部件和計算機磁盤加工,奠定了微加工技術的基礎,隨后西歐和日本微加工技術發展迅速。微納加工技術是一種新興的綜合加工技術。它整合了現代機械、光學、電子、計算機、測量和材料等先進技術成果,使加工精度從20世紀60年代初的微米水平提高到目前的10m水平,在幾十年內提高了1~2個數量級,很大程度提高了產品的性能和可靠性。目前,微納加工技術已成為國家科技發展水平的重要標志。隨著各種新型功能陶瓷材料的成功開發和以這些材料為關鍵部件的各種裝置的高性能,功能陶瓷元件的加工精度達到納米級甚至更高,有效地促進了微納加工技術的進步。近年來,納米技術的出現挑戰了微納加工的極限加工精度一一原子級加工。
皮秒激光精密微孔加工應用作為一種激光精密加工技術,皮秒激光在對高硬度金屬微孔加工方面的應用早在20世紀90年代初就有報道。1996年德國學者Chichkov等研究了納秒、皮秒以及飛秒激光與材料的作用機理,并在真空靶室中對厚度100μm的不銹鋼進行了打孔實驗,建立了激光微納加工的理論模型,為后續的激光微納加工實驗研究奠定了堅實的理論基礎。1998年Jandeleit等對厚度為250nm的銅膜進行了精密制孔實驗,實驗指出使用同一脈寬的皮秒激光器對厚度較薄的金屬材料制孔時,采用高峰值功率更有可能獲得高質量的的制孔效果。然而,優異的加工效果不僅取決于脈沖寬度以及峰值功率,制孔方式也是一個至關重要的因素,針對這一問題,Fohl等采用納秒激光與飛秒激光對制孔方式進行了深入研究,實驗結果顯示納秒激光采用螺旋制孔方式所加工的微孔整潔干凈,而飛秒激光采用一般的沖擊制孔方式所加工的微孔邊緣有明顯的再鑄層。通過光刻技術制作出的微納結構需進一步通過刻蝕或者鍍膜,才可獲得所需的結構或元件。
濺射鍍膜有兩種方式:一種稱為離子束濺射,指真空狀態下用離子束轟擊靶表面,使濺射出的粒子在基體表面成膜,該工藝較為昂貴,主要用于制取特殊的薄膜;另一種稱為陰極濺射,主要利用低壓氣體放電現象,使處于等離子狀態下的離子轟擊靶面,濺射出的粒子沉積在基體上。它采用平行板電極結構,膜料物質做成的大面積靶為陰極,支持基體的基板為陽極,安裝于鐘罩式真空容器內。為減少污染,先將鐘罩內的壓強抽到小于10-3~10-4Pa,然后充入Ar氣,使壓強維持在1~10Pa。在兩極之間加數千伏的電壓進行濺射鍍膜。與蒸發鍍膜相比,濺射鍍膜時靶材(膜料)無相變,化合物成分穩定,合金不易分餾,因此適合制備的膜材非常廣。由于濺射沉積到襯底上的粒子能量比蒸發時的能量高50倍,它們對襯底有清洗和升溫作用,所以形成的薄膜附著力大。特別是濺射鍍膜容易控制膜的成分,通過直接濺射或者反應濺射,可以制備大面積均勻的各種合金膜、化合物膜、多層膜和復合膜。濺射鍍膜易實現連續化、自動化作業和規模化生產。但是,由于濺射時要使用高電壓和氣體,所以裝置比較復雜,薄膜易受濺射氣氛的影響,薄膜沉積速率也較低。此外,濺射鍍膜需要事先制備各種成分的靶,裝卸靶不太方便。 新一代微納制造系統應滿足的要求:能生產多種多樣高度復雜的微納產品。超快微納加工器件封裝
微納加工平臺,主要是兩個方面:微納加工、微納檢測。達州石墨烯微納加工
電子束光刻技術是利用電子束在涂有電子抗蝕劑的晶片上直接描畫或投影復印圖形的技術.電子抗蝕劑是一種對電子敏感的高分子聚合物,經過電子束掃描過的電子抗蝕劑發生分子鏈重組,使曝光圖形部分的抗蝕劑發生化學性質改變。經過顯影和定影,獲得高分辨率的抗蝕劑曝光圖形。電子束光刻技術的主要工藝過程為涂膠、前烘、電子束曝光、顯影和堅膜。現代的電子束光刻設備已經能夠制作小于10nm的精細線條結構。電子束光刻設備也是制作光學掩膜版的重要工具。影響曝光精度的內部工藝因素主要取決于電子束斑尺寸、掃描步長、電子束流劑量和電子散射引起的鄰近效應。達州石墨烯微納加工
廣東省科學院半導體研究所是一家有著先進的發展理念,先進的管理經驗,在發展過程中不斷完善自己,要求自己,不斷創新,時刻準備著迎接更多挑戰的活力公司,在廣東省等地區的電子元器件中匯聚了大量的人脈以及**,在業界也收獲了很多良好的評價,這些都源自于自身不努力和大家共同進步的結果,這些評價對我們而言是比較好的前進動力,也促使我們在以后的道路上保持奮發圖強、一往無前的進取創新精神,努力把公司發展戰略推向一個新高度,在全體員工共同努力之下,全力拼搏將共同廣東省科學院半導體研究所供應和您一起攜手走向更好的未來,創造更有價值的產品,我們將以更好的狀態,更認真的態度,更飽滿的精力去創造,去拼搏,去努力,讓我們一起更好更快的成長!