磁控濺射靶材的分類如下:根據材料的成分不同,靶材可分為金屬靶材、合金靶材、無機非金屬靶材等。其中無機非金屬靶材又可分為氧化物、硅化物、氮化物和氟化物等不同種類靶材。根據幾何形狀的不同,靶材可分為長方體形靶材、圓柱體靶材和不規則形狀靶材;此外,靶材還可以分為實心和空心兩種類型靶材。目前靶材較常用的分類方法是根據靶材應用領域進行劃分,主要包括半導體領域應用靶材、記錄介質應用靶材、顯示薄膜應用靶材、光學靶材、超導靶材等。其中半導體領域用靶材、記錄介質用靶材和顯示靶材是市場需求規模較大的三類靶材。脈沖磁控濺射可以有效地抑制電弧產生進而消除由此產生的薄膜缺陷。河南高溫磁控濺射過程
磁控濺射的工藝研究:濺射變量。電壓和功率:在氣體可以電離的壓強范圍內如果改變施加的電壓,電路中等離子體的阻抗會隨之改變,引起氣體中的電流發生變化。改變氣體中的電流可以產生更多或更少的離子,這些離子碰撞靶體就可以控制濺射速率。一般來說,提高電壓可以提高離化率。這樣電流會增加,所以會引起阻抗的下降。提高電壓時,阻抗的降低會大幅度地提高電流,即大幅度提高了功率。如果氣體壓強不變,濺射源下的基片的移動速度也是恒定的,那么沉積到基片上的材料的量則決定于施加在電路上的功率。在VONARDENNE鍍膜產品中所采用的范圍內,功率的提高與濺射速率的提高是一種線性的關系。真空磁控濺射設備磁控濺射適用于制備大面積均勻薄膜,并能實現單機年產上百萬平方米鍍膜的工業化生產。
PVD技術特征:過濾陰極弧。過濾陰極電弧配有高效的電磁過濾系統,可將弧源產生的等離子體中的宏觀大顆粒過濾掉,因此制備的薄膜非常致密和平整光滑,具有抗腐蝕性能好,與機體的結合力很強。離子束:離子束加工是在真空條件下,先由電子槍產生電子束,再引入已抽成真空且充滿惰性氣體之電離室中,使低壓惰性氣體離子化。由負極引出陽離子又經加速、集束等步驟,獲得具有一定速度的離子投射到材料表面,產生濺射效應和注入效應。由于離子帶正電荷,其質量比電子大數千、數萬倍,所以離子束比電子束具有更大的撞擊動能,是靠微觀的機械撞擊能量來加工的。
磁控濺射又稱為高速低溫濺射,在磁場約束及增強下的等離子體中的工作氣體離子,在靶陰極電場的加速下,轟擊陰極材料,使材料表面的原子或分子飛離靶面,穿越等離子體區以后在基片表面淀積、遷移較終形成薄膜。與二極濺射相比較,磁控濺射的沉積速率高,基片升溫低,膜層質量好,可重復性好,便于產業化生產。它的發展引起了薄膜制備工藝的巨大變革。磁控濺射源在結構上必須具備兩個基本條件:(1)建立與電場垂直的磁場;(2)磁場方向與陰極表面平行,并組成環形磁場。磁控濺射方法在裝飾領域的應用:如各種全反射膜和半透明膜;比如手機殼、鼠標等。
真空磁控濺射為什么必須在真空環境?濺射過程是通過電能,使氣體的離子轟擊靶材,就像磚頭砸土墻,土墻的部分原子濺射出來,落在所要鍍膜的基體上的過程。如果氣體太多,氣體離子在運行到靶材的過程中,很容易跟路程中的其他氣體離子或分子碰撞,這樣就不能加速,也濺射不出靶材原子來。所以需要真空狀態。而如果氣體太少,氣體分子不能成為離子,沒有很多可以轟擊靶材,所以也不行。只能選擇中間值,有足夠的氣體離子可以轟擊靶材,而在轟擊過程中,不至于因為氣體太多而相互碰撞致使失去太多的能量的氣體量,所以必須在較為恒定的真空狀態下。此狀態根據氣體分子直徑和分子自由程計算。一般在0.2-0.5Pa之間。磁控濺射的原理是:靶材背面加上強磁體,形成磁場。廣東反應磁控濺射原理
磁控濺射方法具有設備簡單、易于控制、涂覆面積大、附著力強等優點。河南高溫磁控濺射過程
高速率磁控濺射的一個固有的性質是產生大量的濺射粒子而獲得高的薄膜沉積速率,高的沉積速率意味著高的粒子流飛向基片,導致沉積過程中大量粒子的能量被轉移到生長薄膜上,引起沉積溫度明顯增加。由于濺射離子的能量大約70%需要從陰極冷卻水中帶走,薄膜的較大濺射速率將受到濺射靶冷卻的限制。冷卻不但靠足夠的冷卻水循環,還要求良好的靶材導熱率及較薄膜的靶厚度。同時高速率磁控濺射中典型的靶材利用率只有20%~30%,因而提高靶材利用率也是有待于解決的一個問題。河南高溫磁控濺射過程
廣東省科學院半導體研究所在微納加工技術服務,真空鍍膜技術服務,紫外光刻技術服務,材料刻蝕技術服務一直在同行業中處于較強地位,無論是產品還是服務,其高水平的能力始終貫穿于其中。公司成立于2016-04-07,旗下芯辰實驗室,微納加工,已經具有一定的業內水平。公司承擔并建設完成電子元器件多項重點項目,取得了明顯的社會和經濟效益。多年來,已經為我國電子元器件行業生產、經濟等的發展做出了重要貢獻。