真空鍍膜技術一般分為兩大類,即物理的氣相沉積技術和化學氣相沉積技術。物理的氣相沉積技術是指在真空條件下,利用各種物理方法,將鍍料氣化成原子、分子或使其離化為離子,直接沉積到基體表面上的方法。制備硬質反應膜大多以物理的氣相沉積方法制得,它利用某種物理過程,如物質的熱蒸發,或受到離子轟擊時物質表面原子的濺射等現象,實現物質原子從源物質到薄膜的可控轉移過程。物理的氣相沉積技術具有膜/基結合力好、薄膜均勻致密、薄膜厚度可控性好、應用的靶材普遍、濺射范圍寬、可沉積厚膜、可制取成分穩定的合金膜和重復性好等優點。同時,物理的氣相沉積技術由于其工藝處理溫度可控制在500℃以下。化學氣相沉積技術是把含有構成薄膜元素的單質氣體或化合物供給基體,借助氣相作用或基體表面上的化學反應,在基體上制出金屬或化合物薄膜的方法,主要包括常壓化學氣相沉積、低壓化學氣相沉積和兼有CVD和PVD兩者特點的等離子化學氣相沉積等。真空鍍膜機爐體與爐門為了充分利用爐體的內部空間,減輕真空系統的負載。上海功率器件真空鍍膜
電子束蒸發是基于鎢絲的蒸發.大約 5 到 10 kV 的電流通過鎢絲(位于沉積區域外以避免污染)并將其加熱到發生電子熱離子發射的點.使用永磁體或電磁體將電子聚焦并導向蒸發材料(放置在坩堝中).在電子束撞擊蒸發丸表面的過程中,其動能轉化為熱量,釋放出高能量(每平方英寸數百萬瓦以上).因此,容納蒸發材料的爐床必須水冷以避免熔化.電子束蒸發與熱蒸發的區別在于:電子束蒸發是用一束電子轟擊物體,產生高能量進行蒸發, 熱蒸發通過加熱完成這一過程.與熱蒸發相比,電子束蒸發提供了高能量;但將薄膜的厚度控制在 5nm 量級將是困難的.在這種情況下,帶有厚度監控器的良好熱蒸發器將更合適。肇慶光學真空鍍膜源或靶的不斷改進,擴大了真空鍍膜材料的選用范圍。
真空鍍膜:真空蒸發鍍膜法:真空蒸發法的原理是:在真空條件下,用蒸發源加熱蒸發材料,使之蒸發或升華進入氣相,氣相粒子流直接射向基片上沉積或結晶形成固態薄膜;由于環境是真空,因此,無論是金屬還是非金屬,在這種情況下蒸發要比常壓下容易得多。真空蒸發鍍膜是發展較早的鍍膜技術,其特點是:設備相對簡單,沉積速率快,膜層純度高,制膜材料及被鍍件材料范圍很廣,鍍膜過程可以實現連續化,應用相當普遍。按蒸發源的不同,主要分為:電阻加熱蒸發、電子束蒸發、電弧蒸發和激光蒸發等。
真空鍍膜的方法:濺射鍍膜:濺射鍍膜是指在真空室中,利用荷能粒子轟擊靶表面,使靶材的原子或分子從表面發射出來,進而在基片上沉積的技術。在濺射鍍鈦的實驗中,電子、離子或中性粒子均可作為轟擊靶的荷能粒子,而由于離子在電場下易于加速并獲得較大動能,所以一般是用Ar+作為轟擊粒子。與傳統的蒸發鍍膜相比,濺射鍍膜可以在低溫、低損傷的條件下實現高速沉積、附著力較強、制取高熔點物質的薄膜,在大面積連續基板上可以制取均勻的膜層。濺射鍍膜被稱為可以在任何基板上沉積任何材料的薄膜技術,因此應用十分普遍。離子鍍是真空蒸發與陰極濺射技術的結合。
真空鍍膜是指在高真空的條件下加熱金屬或非金屬材料,使其蒸發并凝結于鍍件(金屬、半導體或絕緣體)表面而形成薄膜的一種方法。例如,真空鍍鋁、真空鍍鉻等。真空鍍膜是真空應用領域的一個重要方面,它是以真空技術為基礎,利用物理或化學方法,并吸收電子束、分子束、離子束、等離子束、射頻和磁控等一系列新技術,為科學研究和實際生產提供薄膜制備的一種新工藝。簡單地說,在真空中把金屬、合金或化合物進行蒸發或濺射,使其在被涂覆的物體(稱基板、基片或基體)上凝固并沉積的方法,稱為真空鍍膜。真空鍍膜中離子鍍的鍍層無小孔。新型真空鍍膜加工
真空鍍膜機的優點:其封口性能好,尤其包裝粉末狀產品時,不會污染封口部分,保證了包裝的密封性能。上海功率器件真空鍍膜
真空鍍膜的方法:離子鍍:離子鍍Z早是由D。M。Mattox在1963年提出的。在真空條件下,利用氣體放電使氣體或蒸發物質離化,在氣體離子或蒸發物質離子轟擊作用的同時,把蒸發物質或其反應物蒸鍍在基片上。離子鍍是將輝光放電、等離子技術與真空蒸發鍍膜技術相結合的一門新型鍍膜技術。它兼具真空蒸鍍和濺射鍍膜的優點,由于荷能粒子對基體表面的轟擊,可以使膜層附著力強,繞射性好,沉積速率高,對環境無污染等好處。離子鍍的種類多種多樣,根據鍍料的氣化方式(電阻加熱、電子束加熱、等離子電子束加熱、多弧加熱、高頻感應加熱等)、氣化分子或原子的離化和激發方式(輝光放電型、電子束型、熱電子型、等離子電子束型等),以及不同的蒸發源與不同的電離方式、激發方式可以有很多種不同的組合方式。上海功率器件真空鍍膜