磁控濺射是在陰極靶的表面上方形成一個正交電磁場。當濺射產生的二次電子在陰極位降區內被加速為高能電子后,并不直接飛向陽極,而是在正交電磁場作用下作來回振蕩的近似擺線的運動。高能電子不斷與氣體分子發生碰撞并向后者轉移能量,使之電離而本身變成低能電子。這些低能電子較終沿磁力線漂移到陰極附近的陽極而被吸收,避免高能電子對極板的強烈轟擊,消除了二極濺射中極板被轟擊加熱和被電子輻照引起的損傷,體現出磁控濺射中極板“低溫”的特點。由于外加磁場的存在,電子的復雜運動增加了電離率,實現了高速濺射。磁控濺射的技術特點是要在陰極靶面附件產生與電場方向垂直的磁場,一般采用永久磁鐵實現。隨著工業的需求和表面技術的發展,新型磁控濺射如高速濺射、自濺射等成為磁控濺射領域新的發展趨勢。海南智能磁控濺射流程
磁控濺射的工作原理是指電子在電場E的作用下,在飛向基片過程中與氬原子發生碰撞,使其電離產生出Ar正離子和新的電子;新電子飛向基片,Ar離子在電場作用下加速飛向陰極靶,并以高能量轟擊靶表面,使靶材發生濺射。在濺射粒子中,中性的靶原子或分子沉積在基片上形成薄膜,而產生的二次電子會受到電場和磁場作用,產生E(電場)×B(磁場)所指的方向漂移,簡稱E×B漂移,其運動軌跡近似于一條擺線。若為環形磁場,則電子就以近似擺線形式在靶表面做圓周運動,它們的運動路徑不只很長,而且被束縛在靠近靶表面的等離子體區域內,并且在該區域中電離出大量的Ar來轟擊靶材,從而實現了高的沉積速率。隨著碰撞次數的增加,二次電子的能量消耗殆盡,逐漸遠離靶表面,并在電場E的作用下較終沉積在基片上。由于該電子的能量很低,傳遞給基片的能量很小,致使基片溫升較低。海南雙靶材磁控濺射設備磁控濺射包括很多種類,各有不同工作原理和應用對象。
磁控濺射粉體鍍膜技術已經實現了銀包銅粉、銀包鋁粉、鋁包硅粉等多種微納米級粉體的量產.由該技術得到的功能性復合粉體具有優異的分散性,鍍層均勻度較高,鍍層與粉體的結合緊密度較高。磁控濺射鍍膜可以賦予超細粉體新的特性,例如在微米級二氧化硅表面鍍鋁,得到的復合粉體不但具有良好的分散性,好具有優異的光學性能,可以作為一種特殊效果顏料用于高級塑料制品加工中.相較于傳統的鋁粉顏料,該特殊效果顏料不但有效改善了塑料制品的注塑缺陷(流痕\熔接線),還使得制品外觀質感更加高級。
近年來磁控濺射技能發展十分迅速,代表性辦法有平衡平衡磁控濺射、反響磁控濺射、中頻磁控濺射及高能脈沖磁控濺射等等。放電發生的等離子體中,氬氣正離子在電場效果下向陰極移動,與靶材外表磕碰,受磕碰而從靶材外表濺射出的靶材原子稱為濺射原子。磁控濺射不只應用于科研及工業范疇,已延伸到許多日常生活用品,主要應用在化學氣相堆積制膜困難的薄膜制備。磁控濺射技能在制備電子封裝及光學薄膜方面已有多年,特別是先進的中頻非平衡磁控濺射技能也已在光學薄膜、通明導電玻璃等方面得到應用。反應磁控濺射普遍應用于化合物薄膜的大批量生產。
直流磁控濺射所用的電源是直流高壓電源,通常在300~1000V,特點是濺射速率快,造價低,后期維修保養廉價。可是只能濺射金屬靶材,假如靶材是絕緣體,隨著濺射的深化,靶材會聚集很多的電荷,導致濺射無法持續。因而關于金屬靶材通常用直流磁控濺射,因為造價廉價,結構簡略,目前在工業上使用普遍。脈沖磁控濺射是采用脈沖電源或者直流電源與脈沖生成裝置配合,輸出脈沖電流驅動磁控濺射沉積。一般使用矩形波電壓,既容易獲得又有利于研究濺射放電等離子體的變化過程。工作模式與中頻濺射。磁控濺射設備一般根據所采用的電源的不同又可分為直流濺射和射頻濺射兩種。江蘇多層磁控濺射步驟
相較于蒸發鍍膜,真空磁控濺射鍍膜的膜更均勻。海南智能磁控濺射流程
磁控濺射應用:(1)磁控濺射技術在光學薄膜(如增透膜)、低輻射玻璃和透明導電玻璃等方面也得到應用。在透明導電玻璃在玻璃基片或柔性襯底上,濺射制備SiO2薄膜和摻雜ZnO或InSn氧化物(ITO)薄膜,使可見光范圍內平均光透過率在90%以上。(2)在現代機械加工工業中,利用磁控濺射技術制作表面功能膜、超硬膜,自潤滑薄膜,能有效的提高表面硬度、復合韌性、耐磨損性和抗高溫化學穩定性能,從而大幅度地提高涂層產品的使用壽命。磁控濺射除上述已被大量應用的領域,還在高溫超導薄膜、鐵電體薄膜、巨磁阻薄膜、薄膜發光材料、太陽能電池、記憶合金薄膜研究方面發揮重要作用。海南智能磁控濺射流程