AIVS-D系列在線PCBA插件AOI通過1200或2000萬高分辨率的工業(yè)相機,從電子電路板頂面拍照,通過AI人工技術(shù),深度學(xué)習(xí)算法、智能圖像分析,檢測電子電路板上插件元器件的缺件、多件、偏移、反向、錯件、浮高、OCV(文字識別)、可支持測試色環(huán)電阻錯料。本插件AOI設(shè)備可應(yīng)用于波峰焊爐前或爐后,應(yīng)用在爐后時,可自動檢測板卡的旋轉(zhuǎn)角度,保證元件的檢測正確性和穩(wěn)定性。AIVS-D系列在線PCBA插件AOI采用的卷積神經(jīng)網(wǎng)絡(luò)(ConvolutionalNeuralNetworks,CNN)是一類包含卷積計算且具有深度結(jié)構(gòu)的前饋神經(jīng)網(wǎng)絡(luò)(FeedforwardNeuralNetworks),是深度學(xué)習(xí)(deeplearning)的表示算法之一。卷積神經(jīng)網(wǎng)絡(luò)仿造生物的視知覺(visualperception)機制構(gòu)建,可以進行監(jiān)督學(xué)習(xí)和非監(jiān)督學(xué)習(xí)。作為圖像識別領(lǐng)域的算法之一,卷積神經(jīng)網(wǎng)絡(luò)在學(xué)習(xí)數(shù)據(jù)充足時有穩(wěn)定的表現(xiàn)。針對本系統(tǒng)所處理的大規(guī)模圖像分類問題,卷積神經(jīng)網(wǎng)絡(luò)將用于提取圖像的判別特征,再通過分類器進行學(xué)習(xí)和識別。AOI檢測儀有很高的自潔能力,不能給生產(chǎn)環(huán)境尤其被測工件本身帶來二次污染,這會影響系統(tǒng)構(gòu)件的材料選型。湖南aivsAOI研發(fā)
畫面顯示:1、主圖畫面都有顯示器件框,便于觀察器件是否被識別;2、根據(jù)底板顏色可以自由選擇器件框顏色;3、可依據(jù)客戶需求,自由定義器件中文名;4、不良器件圖靜態(tài)顯示;程序制作靈活性:1、無需設(shè)置參數(shù);2、在線抓拍首件板系統(tǒng)輔助做程序,且支持持續(xù)補充學(xué)習(xí),學(xué)習(xí)后自動建模比例更高(80%+);---自動框圖器件種類多(60+),比例高。3、支持中文、英文、中英文混合輸入;4、批量復(fù)制、粘貼、剪切、刪除等支持快捷鍵操作。---硬件條件和安裝尺寸不發(fā)生變化,已做好的模板可長久正常使用廣東專業(yè)AOI外觀檢測與人工檢查做一個形象的比喻,AOI采用的普通LED或特殊光源相當(dāng)于人工檢查時的自然光。
AOI檢測主要應(yīng)用領(lǐng)域包括PCB、半導(dǎo)體和FPD面板。因AOI檢測主要應(yīng)用于PCB、半導(dǎo)體及FPD等電子元器件生產(chǎn)過程中的檢測環(huán)節(jié),幾乎每一個電子元器件都需要進行瑕疵檢測,因此這些電子元器件的產(chǎn)量與AOI檢測的應(yīng)用結(jié)構(gòu)息息相關(guān)。因此,AOI檢測行業(yè)應(yīng)用需求結(jié)構(gòu)主要通過PCB、半導(dǎo)體和FPD的產(chǎn)量比例來進行測算得到。經(jīng)初步測算,PCB是目前我國主要的AOI應(yīng)用領(lǐng)域,大概占AOI檢測總規(guī)模的。對于產(chǎn)品檢測來說,利用AOI技術(shù)能夠有效提升產(chǎn)品檢測分析的準(zhǔn)確性和完整性。隨著電子制造產(chǎn)業(yè)鏈的進一步整合,檢測市場將不斷擴容,AOI技術(shù)在終端應(yīng)用將持續(xù)得到突破,應(yīng)用領(lǐng)域拓展將為AOI檢測服務(wù)和設(shè)備的需求增長增添動力,市場規(guī)模存在較大成長空間。
中國機器視覺起步于80年代的技術(shù)引進,隨著98年半導(dǎo)體工廠的整線引進,也帶入機器視覺系統(tǒng),06年以前國內(nèi)機器視覺產(chǎn)品主要集中在外資制造企業(yè),規(guī)模都較小,06年開始,工業(yè)機器視覺應(yīng)用的客戶群開始擴大到印刷、食品等檢測領(lǐng)域,2011年市場開始高速增長,隨著人工成本的增加和制造業(yè)的升級需求,加上計算機視覺技術(shù)的快速發(fā)展,越來越多機器視覺方案滲透到各領(lǐng)域,缺陷檢測功能,是機器視覺應(yīng)用得多的功能之一,主要檢測產(chǎn)品表面的各種信息。AOI檢測的工作邏輯可以簡單地分為圖像采集階段,數(shù)據(jù)處理階段,圖像分析段和缺陷報告階段四個階段。
視覺世界,是無限變化的,系統(tǒng)設(shè)計者有無數(shù)種方法使用視覺數(shù)據(jù)。其中,有一些應(yīng)用案例,例如目標(biāo)識別以及定位,都是可以通過深度學(xué)習(xí)技術(shù),來得到很好的解決的。因此,如果你的應(yīng)用,需要一種算法來識別家具,那么你很幸運:你可以選擇一種深度神經(jīng)網(wǎng)絡(luò)算法,并且使用自己的數(shù)據(jù)集,對其進行重新編譯。我們要先看看這個數(shù)據(jù)集。訓(xùn)練數(shù)據(jù),對有效的深度學(xué)習(xí)算法是至關(guān)重要的。訓(xùn)練和驗證數(shù)據(jù),必須能夠表示出算法要處理的情況的多樣性。AOI的圖像采集系統(tǒng)主要包括光電轉(zhuǎn)化攝影系統(tǒng),照明系統(tǒng)和控制系統(tǒng)三個部分。廣東專業(yè)AOI外觀檢測
若干個光電轉(zhuǎn)化器以行列的方式進行排列形成矩陣就構(gòu)成了圖像傳感器。湖南aivsAOI研發(fā)
AOI圖像采集的一個關(guān)鍵步驟是控制系統(tǒng),光電傳感器的FOV(視窗)有限,物體高速運動中準(zhǔn)確地抓拍到清晰的圖像,軟硬件協(xié)調(diào)動作非常重要,如下圖所示,當(dāng)圖像傳感器與機臺移動速度不匹配時造成圖像的拉伸,收縮等變形,所以,載物移動平臺XY方向移動與圖像采集光電傳感器的同步移動影響到數(shù)據(jù)的準(zhǔn)確,要在固定光照,等間距下拍攝一幅清晰的圖像,高精度的導(dǎo)軌,電機和運動控制程序是非常必要的。在AOI檢測中,噪聲是造成圖像退化的因素之一,起因是AOI圖像獲取,傳輸過程中,外界雜散光,光電二極管電子噪聲及溫度,光源的不穩(wěn)定不均勻,機械系統(tǒng)的抖動,傳感器溫度等原因?qū)е拢豢杀苊獾氖沟脠D像因含有噪音而變得模糊。給圖像識別,圖像切割等后續(xù)處理工作帶來了困難。因此,為了獲得真實的圖像信息,除去噪聲的濾波處理必不可少。 湖南aivsAOI研發(fā)
深圳愛為視智能科技有限公司位于西麗街道曙光社區(qū)中山園路1001號TCL科學(xué)園區(qū)E3棟201之218。愛為視致力于為客戶提供良好的智能視覺檢測設(shè)備,一切以用戶需求為中心,深受廣大客戶的歡迎。公司秉持誠信為本的經(jīng)營理念,在機械及行業(yè)設(shè)備深耕多年,以技術(shù)為先導(dǎo),以自主產(chǎn)品為重點,發(fā)揮人才優(yōu)勢,打造機械及行業(yè)設(shè)備良好品牌。在社會各界的鼎力支持下,持續(xù)創(chuàng)新,不斷鑄造***服務(wù)體驗,為客戶成功提供堅實有力的支持。