如果把AI視覺比作一個個體,那么深度學習便成為這一個體中重要的機體之一,許多功能的存在直接來源且依賴于它。直觀點說,深度學習算法成功運用于計算機視覺的實例如人臉識別、圖像**、物體檢測與追蹤等。人工檢測在早期的工業質檢中占有一定的優勢,但隨著生產科技的不端更新進步,制造環節對于檢驗水平的要求也越來越高,顯然人工檢查已無法滿足,檢測程度越來越復雜化和精密化使得機器視覺迫切需要被應用其中來承擔、平衡生產的強度及壓力。隨著電子技術、圖像傳感技術和計算機技術的快速發展,AOI技術成為表面缺陷檢測的重要手段。新一代AOI檢測
AOI圖像采集的一個關鍵步驟是控制系統,光電傳感器的FOV(視窗)有限,物體高速運動中準確地抓拍到清晰的圖像,軟硬件協調動作非常重要,如下圖所示,當圖像傳感器與機臺移動速度不匹配時造成圖像的拉伸,收縮等變形,所以,載物移動平臺XY方向移動與圖像采集光電傳感器的同步移動影響到數據的準確,要在固定光照,等間距下拍攝一幅清晰的圖像,高精度的導軌,電機和運動控制程序是非常必要的。在AOI檢測中,噪聲是造成圖像退化的因素之一,起因是AOI圖像獲取,傳輸過程中,外界雜散光,光電二極管電子噪聲及溫度,光源的不穩定不均勻,機械系統的抖動,傳感器溫度等原因導致,不可避免的使得圖像因含有噪音而變得模糊。給圖像識別,圖像切割等后續處理工作帶來了困難。因此,為了獲得真實的圖像信息,除去噪聲的濾波處理必不可少。 浙江新一代智能AOI設備AOI檢測儀A系統多采用黑白相機成像,提高成像分辨能力,還要考慮圖像運動過程拍攝圖片模糊帶來的不利影響。
本系統采用的卷積神經網絡(ConvolutionalNeuralNetworks,CNN)是一類包含卷積計算且具有深度結構的前饋神經網(FeedforwardNeuralNetworks),是深度學習(deeplearning)的表示算法之一。卷積神經網絡仿造生物的視知覺(visualperception)機制構建,可以進行監督學習和非監督學習。作為圖像識別領域的中心算法之一,卷積神經網絡在學習數據充足時有穩定的表現。針對本系統所處理的大規模圖像分類問題,卷積神經網絡將用于提取圖像的判別特征,再通過分類器進行學習和識別。畫面顯示:1、主圖畫面都有顯示器件框,便于觀察器件是否被識別;2、根據底板顏色可以自由選擇器件框顏色;3、可依據客戶需求,自由定義器件中文名;4、不良器件圖靜態顯示。
圖像采集階段(光學掃描和數據收集)AOI的圖像采集系統主要包括光電轉化攝影系統,照明系統和控制系統三個部分。因為攝影得到的圖像被用于與模板做對比,所以獲取的圖像信息準確性對于檢測結果非常重要,可以想象一下,如果圖像采集器看不清楚或看不到被檢測物體的特征點,那么也就無法談到準確的檢出。下面我們對光電轉化攝影系統,照明系統和控制系統三個部分逐一分析介紹。首先,光電轉化攝影系統指的是光電二極管器件和與之搭配的成像系統。是獲得圖像的”眼睛”,原理都是光電二極管接受到被檢測物體反射的光線,光能轉化產生電荷,轉化后的電荷被光電傳感器中的電子元件收集,傳輸形成電壓模擬信號。二極管吸收光線強度不同時生成的模擬電壓大小不同,依次輸出模擬電壓值被轉化為數字灰階0-255值,灰階值反映了物體反射光的強弱,進而實現識別不同被檢測物體的目的。 圖像傳感器、鏡頭和光源三者組合構成了大多數自動光學檢測系統中感知單元。
AOI檢測技術應運而生的背景是電子元件集成度與精細化程度高,檢測速度與效率更高,檢測零缺陷的發展需求。AOI檢測的比較大的優點是節省人力,降低成本,提高生產效率,統一檢測標準和排除人為因素干擾,保證了檢測結果的穩定性,可重復性和準確性,及時發現產品的不良,確保出貨質量。在人工智能技術與大數據發展進步中,AOI檢測不僅是一部檢測設備,對大量不良結果進行分類和統計,可以發現不良發生的原因,在工藝改善和生產良率提升中也正逐步發揮著更重要的作用,因此,可以預期未來AOI檢測技術將在半導體與電子電路檢測中將會發揮越來越重要的作用。用計算機處理系統代替人腦執行數據處理,讓AOI檢測系統可以取產制造中的人工目檢環節。湖北專業AOI系統
采用高分辨率工業相機和智能圖像分析,檢測電子電路板上插件元器件多、錯、漏、反等缺陷。新一代AOI檢測
AOI的圖像采集系統主要包括光電轉化攝影系統,照明系統和控制系統三個部分。因為攝影得到的圖像被用于與模板做對比,所以獲取的圖像信息準確性對于檢測結果非常重要,可以想象一下,如果圖像采集器看不清楚或看不到被檢測物體的特征點,那么也就無法談到準確的檢出。下面我們對光電轉化攝影系統,照明系統和控制系統三個部分逐一分析介紹。首先,光電轉化攝影系統指的是光電二極管器件和與之搭配的成像系統。是獲得圖像的”眼睛”,原理都是光電二極管接受到被檢測物體反射的光線,光能轉化產生電荷,轉化后的電荷被光電傳感器中的電子元件收集,傳輸形成電壓模擬信號。二極管吸收光線強度不同時生成的模擬電壓大小不同,依次輸出模擬電壓值被轉化為數字灰階0-255值,灰階值反映了物體反射光的強弱,進而實現識別不同被檢測物體的目的。新一代AOI檢測
深圳愛為視智能科技有限公司位于西麗街道曙光社區中山園路1001號TCL科學園區E3棟201之218。公司自成立以來,以質量為發展,讓匠心彌散在每個細節,公司旗下智能視覺檢測設備深受客戶的喜愛。公司將不斷增強企業重點競爭力,努力學習行業知識,遵守行業規范,植根于機械及行業設備行業的發展。愛為視憑借創新的產品、專業的服務、眾多的成功案例積累起來的聲譽和口碑,讓企業發展再上新高。