本系統采用的卷積神經網絡(ConvolutionalNeuralNetworks,CNN)是一類包含卷積計算且具有深度結構的前饋神經網(FeedforwardNeuralNetworks),是深度學習(deeplearning)的表示算法之一。卷積神經網絡仿造生物的視知覺(visualperception)機制構建,可以進行監督學習和非監督學習。作為圖像識別領域的算法之一,卷積神經網絡在學習數據充足時有穩定的表現。針對本系統所處理的大規模圖像分類問題,卷積神經網絡將用于提取圖像的判別特征,再通過分類器進行學習和識別。畫面顯示:1、主圖畫面都有顯示器件框,便于觀察器件是否被識別;2、根據底板顏色可以自由選擇器件框顏色;3、可依據客戶需求,自由定義器件中文名;4、不良器件圖靜態顯示;程序制作靈活性:1、無需設置參數;2、在線抓拍首件板系統輔助做程序,且支持持續補充學習,學習后自動建模比例更高(80%+);---自動框圖器件種類多(60+),比例高。3、支持中文、英文、中英文混合輸入;4、批量復制、粘貼、剪切、刪除等支持快捷鍵操作。---硬件條件和安裝尺寸不發生變化。 AOI是近幾年才興起的一種新型測試技術,但發展迅速很多廠家都推出了AOI測試設備。新一代AOI升級換代
爐后皮帶線模式:支持,且可以多機種共線生產;支持NGbuffer對接;支持多工位語音播報、自定義語音播報內容;通訊方式:支持標準接口、定制接口;追溯:可實時輸出。支持按條碼、二維碼、機型、時間等維度追溯;條碼識別:支持識別一維碼(128碼),二維碼(QR/DM碼);畫面顯示:1、主圖畫面動態與靜態結合,便于員工觀察;2、根據底板顏色可以自由選擇器件框顏色,適應各種顏色底板;學習:1、支持系統學習訓練,學習越多效果越好;2、支持本地學習;河南新一代智能AOI檢測設備以目前AOI(自動光學檢測)技術在PCB行業滲透率較高,復雜化趨勢以及制造行業整體對智能化變革的需求。
AOI檢測原理:通過攝像技術將被檢測物體的反射光強,以定量化的灰階值輸出,通過與標準圖像的灰階值進行比較,分析判定缺陷并進行分類的過程。AOI采用的光學傳感器和光學透鏡相當于人眼,AOI的圖像處理與分析系統就相當于人腦,即“看”與“判”兩個環節,在整個AOI檢測中,其工作邏輯可以簡單地分為:Step1:圖像采集階段(光學掃描和數據收集);Step2:數據處理階段(數據分類與轉換);Step3:圖像分析段(特征提取與模板比對);Step4:缺陷報告階段四個階段(缺陷大小類型分類等)。在整個AOI系統運作中,所有的判定基礎都是基于攝影得到的圖像,因為攝影得到的圖像被用于與系統中的模板做對比,所以獲取圖像信息的精確性對于檢測結果非常重要!若圖像采集器看不清楚或看不到被檢測物體的特征點,那么也就無法談到準確的檢出。
本系統采用的卷積神經網絡(ConvolutionalNeuralNetworks,CNN)是一類包含卷積計算且具有深度結構的前饋神經網(FeedforwardNeuralNetworks),是深度學習(deeplearning)的表示算法之一。卷積神經網絡仿造生物的視知覺(visualperception)機制構建,可以進行監督學習和非監督學習。作為圖像識別領域的中心算法之一,卷積神經網絡在學習數據充足時有穩定的表現。針對本系統所處理的大規模圖像分類問題,卷積神經網絡將用于提取圖像的判別特征,再通過分類器進行學習和識別。畫面顯示:1、主圖畫面都有顯示器件框,便于觀察器件是否被識別;2、根據底板顏色可以自由選擇器件框顏色;3、可依據客戶需求,自由定義器件中文名;4、不良器件圖靜態顯示。 當自動檢測時,機器通過攝像頭自動掃描PCB,采集圖像,測試的焊點與數據庫中的合格的參數進行比較。
除光電傳感器外,AOI圖像采集過程中照明系統也非常重要,選擇比較好光源目的是保證被檢測物體的特征區別于其他背景,涉及到光源的光譜特性,光源顏色的色溫特性。高效率長壽命,高亮度且均勻的光源是必須考慮的參數,高亮度均勻性好的光源可以提高信噪比,而長壽命高效率則可以提高設備的穩定性,降低工作負荷。照明光源按照波長分類可以分為可見波長光源,特殊波長光源。可見波長光源也就是一般現代工業AOI檢測設備中較常用的紅綠藍LED光源。AOI檢測不僅是一部檢測設備,對大量不良結果進行分類和統計,可以發現不良發生的原因。智能AOI系統
AOI檢測儀有很高的自潔能力,不能給生產環境尤其被測工件本身帶來二次污染,這會影響系統構件的材料選型。新一代AOI升級換代
AOI圖像采集的然后一個關鍵步驟是控制系統,光電傳感器的FOV(視窗)有限,物體高速運動中準確地抓拍到清晰的圖像,軟硬件協調動作非常重要,如下圖所示,當圖像傳感器與機臺移動速度不匹配時造成圖像的拉伸,收縮等變形,所以,載物移動平臺XY方向移動與圖像采集光電傳感器的同步移動影響到數據的準確,要在固定光照,等間距下拍攝一幅清晰的圖像,高精度的導軌,電機和運動控制程序是非常必要的。首先濾波的定義是將信號中特定波段頻率濾除的操作,是抑制和防止干擾的一項重要措施。在AOI檢測中,噪聲是造成圖像退化的因素之一,起因是AOI圖像獲取,傳輸過程中,外界雜散光,光電二極管電子噪聲及溫度,光源的不穩定不均勻,機械系統的抖動,傳感器溫度等原因導致,不可避免的使得圖像因含有噪音而變得模糊。給圖像識別,圖像切割等后續處理工作帶來了困難。因此,為了獲得真實的圖像信息,除去噪聲的濾波處理必不可少。 新一代AOI升級換代
深圳愛為視智能科技有限公司是一家智能化設備設計、研發、制造、銷售、服務;科學研究和技術服務;計算機軟件、信息系統軟件的開發、銷售、服務;信息系統設計、集成、運行維護、信息技術咨詢、集成電路設計、研發、銷售、服務;電子、通信與自動控制技術研究;計算機科學技術研究;企業管理咨詢(不限制項目);儀器儀表、測量設備;信息傳輸、軟件和信息技術服務;商業信息咨詢;從事電子商務(依法需經批準的項目,經相關部門批準后方可開展經營活動);投資興辦實業(具體項目)另行申報;投資咨詢(不含限制項目)。許可經營項目:集成電路制造;電子設備工程安裝;電子自動化工程安裝;監控系統安裝;智能化系統安裝的公司,致力于發展為創新務實、誠實可信的企業。愛為視擁有一支經驗豐富、技術創新的專業研發團隊,以高度的專注和執著為客戶提供智能視覺檢測設備。愛為視始終以本分踏實的精神和必勝的信念,影響并帶動團隊取得成功。愛為視始終關注機械及行業設備行業。滿足市場需求,提高產品價值,是我們前行的力量。