朗肯循環是指以水蒸氣作為工質的一種理想循環過程,主要包括等熵壓縮、等壓加熱、等熵膨脹、以及一個等壓冷凝過程。用于蒸汽裝置動力循環。工作過程:3-4過程:在水泵中水被壓縮升壓,過程中流經水泵的流量較大,水泵向周圍的散熱量折合到單位質量工質,可以忽略,因而3一4過程簡化為可逆絕熱壓縮過程,即等熵壓縮過程。4-1過程:水在鍋爐中被加熱的過程本來是在外部火焰與工質之間有較大溫差的條件下進行的,而且不可避免地工質會有壓力損失,是一個不可逆加熱過程。我們把它理想化為不計工質壓力變化,并將過程想象為無數個與工質溫度相同的熱源與工質可逆傳熱,也就是把傳熱不可逆因素放在系統之外,只著眼于工質一側。這樣,將加熱過程理想化為定壓可逆吸熱過程。ORC的工作壓力對密封要求低。orc余熱發電供貨公司
利用有機朗肯循環(OrganicRankineCycle,ORC)系統,將低品位熱能(一般低于200℃,如太陽熱能、工業余熱等)轉化為電能。ORC有單循環和雙循環。工質有很多種,如正丁烷、異丁烷,氯乙烷、氨以及氟利昂系列等物質,都可以作為汽輪機的工質。常規的朗肯循環系統以水—水蒸汽作為工質,系統由鍋爐、汽輪機、冷凝器和給水泵4組設備組成.工質在熱力設備中不斷進行等壓加熱、絕熱膨脹、等壓放熱和絕熱壓縮4個過程。ORC只是工質不同而已,而且主要用于低溫領域。orc余熱發電供貨公司ORC發電機組的裝機容量和對電網的運用范圍更廣。
利用有機朗肯循環(ORC)將熱能轉化為機械能是一種利用低品位熱能的有效手段。ORC系統的典型設計過程通常包括:工質選擇、循環結構的選擇、運行參數的優化、部件選型和尺寸設計,這是一個非常耗時且高度依賴于設計人員經驗的過程,在大多數情況下很難實現更優設計。近年來,人工智能這種新興的技術被工程界普遍采用,用于解決傳統手段難以解決的問題。在能源系統的設計中,研究人員也在嘗試利用這種新工具去解決ORC系統設計中的難點問題。目前,有關人工智能輔助ORC系統設計的研究比較零散,大多數工作仍屬于嘗試性的工作,不能為后續研究提供很好的指導。因此,本文對人工智能技術在ORC系統設計中的較新進展進行了文獻綜述,旨在厘清人工智能技術在ORC系統設計中的研究領域,并為人工智能技術更好地輔助ORC系統設計提供指導。
有機朗肯循環技術優勢:有機朗肯循環發電技術可實現對各種形態的工業余熱的回收,適應煙氣、熱水、乏汽等余熱資源。針對低溫有機工質特性,螺桿膨脹機的多適應性和自清潔性可適應不同的余熱條件。同時有機朗肯循環系統構造簡單,制作方便,可實現自動并網及下網,利用低品質余熱產生高品位電力,并入企業電網節省等量的生產用電,變廢熱為資源。與高壓水蒸汽直接作為工質參與發電過程的常規單循環過程相比,有機朗肯循環系統具有其獨特的優越性。有機工質在閉合回路中工作,只起到傳遞熱量的作用,工質的物性不會變化。ORC發電技術市場潛力大。
ORC發電的原理是以沸點遠低于水的有機物質(如丁烷、氯乙烷或氟利昂等[8])為工質,有機工質在熱力設備中不斷進行等壓加熱、絕熱膨脹、等壓放熱和絕熱壓縮4個過程,使熱能不斷轉化為機械能,帶動發電機產生電能,發電裝置的循環系統由換熱器、汽輪機、冷凝器和給水泵組成[9]。ORC的具體過程為:機泵送來的有機工質在換熱器中經低溫余熱加熱后成為過熱蒸汽,過熱蒸汽進入汽輪機,將熱能轉化為機械能,過熱蒸汽釋放出熱能后溫度、壓力均降低,成為乏汽,由冷凝器冷凝為液態,再經機泵升壓,完成一個循環。因為有機工質的常壓沸點遠低于水的常壓沸點(100℃),使得該有機工質在較低溫度下就可以汽化,因此可以充分利用低溫余熱作為熱源進行發電。國內ORC低溫余熱發電技術發展空間很大,仍有多項關鍵技術需要解決。高效磁浮渦輪ORC發電設備報價
使用有機朗肯循環可以用有機工質將低溫余熱回收后進行發電。orc余熱發電供貨公司
有機朗肯循環概念:有機朗肯循環(OrganicRankineCycle,簡稱ORC)利用有機工質低沸點的特性。在低溫條件下有機工質被加熱即發生蒸發,工質汽化后獲得較高的蒸氣壓力,推動膨脹機做功,從而將低品位熱能轉換為高品位的機械能和電能。因此,有機朗肯循環發電技術,是一項將工業生產過程中產生的中低品位余熱加以回收利用,轉化為高品位電能的節能減排技術。ORC發電機組技術原理:ORC發電機組由有機工質、蒸發器、透平膨脹—發電一體機、冷凝器、工質泵、發電控制系統和并網系統等幾部分組成。orc余熱發電供貨公司
上海能環實業有限公司致力于能源,是一家生產型的公司。公司自成立以來,以質量為發展,讓匠心彌散在每個細節,公司旗下高效磁浮ORC發電機,蒸汽差壓磁浮發電機,高速磁浮鼓風機,高速磁浮壓氣機深受客戶的喜愛。公司注重以質量為中心,以服務為理念,秉持誠信為本的理念,打造能源良好品牌。上海能環秉承“客戶為尊、服務為榮、創意為先、技術為實”的經營理念,全力打造公司的重點競爭力。